Uncommon Ground

Academics, biodiversity, genetics, & evolution

Latest Posts

Noisy data and small samples are a bad combination

I first mentioned the problems associated with small samples and noisy data in late August. That post demonstrated that you’d get the sign wrong almost half of the time with a small sample, even though a t-test would tell you that the result is statistically significant. The next two posts on the topic (September 9th and 19th) pointed out that being Bayesian won’t save you, even if you use fairly informative priors.

It turns out that I’m not alone in pointing out these problems. Caroline Tucker discusses a new paper in Ecology by Nathan Lemoine and colleagues that points out the same difficulties. She sums the problem up nicely.

It’s a catch-22 for small effect sizes: if your result is correct, it very well may not be significant; if you have a significant result, you may be overestimating the effect size.

There is no easy solution. Lemoine and his colleagues focus on errors of magnitude, where I’ve been focusing on errors in sign, but the bottom line is the same:

Be wary of results from studies with small sample sizes, even if the effects are statistically significant.

Lemoine, N.P., A. Hoffman, A.J. Felton, L. Baur, F. Chaves, J. Gray, Q. Yu, and M.D. Smith. 2016. Underappreciated problems of low replication in ecological field studies. Ecology doi: 10.1002/ecy.1506

Facts aren’t enough

Everyone is entitled to his own opinion, but not his own facts. Daniel Patrick Moynihan (attributed: Wikiquotes)

Those of us who are scientists have a tendency to think that if we simply lay out the facts – human activities are causing global climate change, for example – that everyone will listen to us and act accordingly. Tali Sharot and Cass Sunstein remind us in a recent New York Times op-ed that the world doesn’t work that way.

[F]or weak believers in man-made climate change, comforting news will have a big impact, and alarming news won’t. Strong believers will show the opposite pattern. And because Americans are frequently exposed to competing claims about the latest scientific evidence, these opposing tendencies will predictably create political polarization — and it will grow over time.

So if scientists (and other experts for that matter) want the public to make informed decisions about complex issues, it’s not enough for us to put out the facts and expect them to speak for themselves. We need to recognize that there is a science of science communication and work with experts in that field to help us find ways to help us communicate more effectively.

One of the first things we have to remember is that communication is not talking.

screen-shot-2016-09-18-at-12-18-55-pm

Further reading:

Fischoff, B., and D.A. Scheufele. 2013. The science of science communication. Proceedings of the National Academy of Sciences  110:14031-14032. doi:

Sunstein, C.R., S. Bobadilla-Suarez, S.C. Lazzaro, T. Sharot.  2016.  How people update beliefs about climate change: good news and bad news.  (September 2, 2016). Available at SSRN: http://ssrn.com/abstract=2821919 or http://dx.doi.org/10.2139/ssrn.2821919

Even an informative prior doesn’t help much

Two weeks ago I pointed out that you should

Be wary of results from studies with small sample sizes, even if the effects are statistically significant.

Last week I pointed out that being Bayesian won’t save you. If you were paying close attention, you may have thought to yourself

Holsinger’s characterization of Bayesian inference isn’t completely fair. The mean effect sizes he simulated were only 0.05, 0.10, and 0.20, but he used a prior with a standard deviation of 1.0 in his analyses. Any Bayesian in her right mind wouldn’t use a prior that broad, because she’d have a clue going into the experiment that the effect size was relatively small. She’d pick a prior that more accurately reflects prior knowledge of the likely results.

It’s a fair criticism, so to see how much difference more informative priors make, I re-did the simulations with a Gaussian prior on each mean with a prior mean of 0.0 (as before) and a standard deviation of 2 times the effect size used in the simulation. Here are the results:

Mean Sample size Power Wrong sign
0.05 10 0/1000 na
50 2/1000 0/2
100 7/1000 2/7
0.10 10 1/1000 0/1
50 0/1000 na
100 0/1000 na
0.20 10 22/1000 2/22
50 128/1000 0/158
100 265/1000 0/292

With a more informative prior, you’re not likely to say that an effect is positive when it’s actually negative. There are, however, a couple of things worth noticing when you compare this table to the last one.

  1. The more informative prior doesn’t help much, if at all, with a sample size of 10. The N(0,1) prior got the sign wrong in 7 out of 62 cases where the 95% credible interval on the posterior mean difference did not include 0. The N(0,0.4) prior made the same mistake in 2 out of 22 cases. So it didn’t make as many mistakes as the less informative prior, but it made almost the same proportion. In other words, you’d be almost as likely to make a sign error with the more informative prior as you are with the less informative prior.
  2. Even with a sample size of 100, you wouldn’t be “confident” that there is a difference very often (only 7 times out of 1000) when the “true” difference is small, 0.05, but you’d make a sign error nearly a third of the time (2 out of 7 cases) .

So what does all of this mean? When designing and interpreting an experiment you need to have some idea of how big the between-group differences you might reasonably expect to see are relative to the within-group variation. If the between-group differences are “small”, you’re going to need a “large” sample size to be confident about your inferences. If you haven’t collected your data yet, the message is to plan for “large” samples within each group. If you have collected your data and your sample size is small, be very careful about interpreting the sign of any observed differences – even if they are “statistically significant.”

What’s a “small” difference, and what’s a “large” sample? You can play with the R/Stan code in Github to explore the effects: https://github.com/kholsinger/noisy-data. You can also read Gelman and Carlin (Perspectives on Psychological Science 9:641; 2014 http://dx.doi.org/10.1177/1745691614551642) for more rigorous advice.

Developing indicators for undergraduate STEM education

The Board on Science Education of the National Academy of Sciences convened a committee to build the conceptual framework for indicators that can be used to document the status and quality of undergraduate stem education.

The quality of undergraduate education in the STEM fields is receiving increasing attention. There are a growing number of initiatives aimed at enhancing the STEM experiences of undergraduate students, some on a national level, some among multi-institution collaborations and some on individual campuses. In addition, improving undergraduate STEM education is one of the priority areas called out in the Federal STEM Education 5 Year Plan.

Recognizing the need to document the current state of undergraduate STEM education at the national level and track improvements over time, an expert committee will develop a conceptual framework for an indicator system. These indicators will focus on the first two years of undergraduate education, document the status and quality of undergraduate STEM education at both community colleges and 4-year institutions, and be used to track improvements at the national level over multiple years.

An interim report and an opportunity to provide feedback is available from the National Academy website. In addition, there is a public meeting on 6 October at which public comment is welcome.

his meeting will provide an avenue for the public to comment on the preliminary draft report from the Committee on Developing Indicators for Undergraduate STEM Education. The committee was tasked by the National Science Foundation to outline a framework and a set of indicators that could be used to monitor the quality of undergraduate STEM over multiple years. The draft represents the first phase of the committee’s work and contains goals and objectives for improving the quality of undergraduate STEM education. The committee requests input on the draft to assist it in developing indicators in the second phase of the study.

This public comment session will feature speakers providing: insight from community college perspectives, STEM reform imitative reflections, institutional perspectives, implications for using data to improve teaching and learning, and challenges of measuring progress toward increased equity in STEM.
This public comment session will also provide time for comments from participants present and includes comments gathered from the online questionnaire.

If you are interested in attending the public forum, here’s a link to more information: http://sites.nationalacademies.org/DBASSE/BOSE/DBASSE_174122.

Four science faculty jobs at NC State

I just received an e-mail from Rob Dunn (@RobRDunn) telling me about four faculty positions that are open at North Carolina State University. As he says,

It is getting to be a fun time for cool science around here.

What graduate students would like to tell their professors

Over at the Daily Nous (a blog with “news for and about the philosophy profession”), a post last Wednesday invited graduate students to leave anonymous answers to the question

What would you like to tell your professor(s) right now, but can’t?

There are a few answers like this

Thank you. I had a great education with you and with the whole department, and I wouldn’t be where I am now without you.

or this

Dear Professor,

you were one tough cookie, relentless and unforgiving. Sometimes it really hurt. Thank you for all that – were it not for the growing pains, I would not have grown. And thanks for all the time you spent on me – being a professor myself now, I can just ask – when did you sleep?

but more of them are like this

To my advisor:

You couldn’t possibly ever understand how much your care, friendship, and ability to consistently challenge and push me philosophically means to me. Thank you so much. And special thanks for being pretty much the only man in my life who I feel like I can trust, intellectually and emotionally, and for being interested in me for philosophical and friendship reasons and not weird sexual or fetishy or emotionally weird reasons.

To (nearly) everyone else in my department: it’s totally transparent that you don’t care about grad students.

Some amount of angst and conflict is inevitable in pursuing a PhD. I’ve never met anyone, no matter how smart or talented she is, who finished a dissertation without facing (and surmounting) at least one significant obstacle. Most encounter two or three. In the midst of those challenges, it’s completely normal for a PhD student to think that no one, including her advisor, cares about her or isn’t willing to give her the support that she needs. What I find so depressing about many of the comments in this post is that they were made by students after they received their PhD. I hope that when my students finish their PhDs, they look back and realize that the times when they were most discouraged and most disheartened were among the times when they learned the most about science and themselves.

Smart teachers use struggle to enhance learning and deepen engagement with their subjects. They call it productive struggle. Why would you encourage students to struggle while learning? (These answers focus on classroom teaching, but the principles generalize easily.)

  • It prioritizes the student-centered portion of lesson.
  • It builds authentic engagement.
  • It emphasizes that [the subject] makes sense.
  • It creates ample opportunity for assessment, intervention, and feedback.
  • It builds perseverance.

I’ve tried to use these principles in advising my graduate students, and I hope I’ve been successful. But you’ll have to ask them how they’d respond to the question at the top of this post if you want to know the answer.

Being Bayesian won’t save you

Last week I pointed out that you should

Be wary of results from studies with small sample sizes, even if the effects are statistically significant.

Now you may be thinking to yourself: “I’m a Bayesian, and I use somewhat informative priors. This doesn’t apply to me.” Well, I’m afraid you’re wrong. Here are results from analysis of data simulated according to the same conditions I used last week in exploring P-values. The prior on each mean is N(0, 1), and the prior on each standard deviation is half-N(0, 1).

Mean Sample size Power Wrong sign
0.05 10 39/1000 18/39
50 59/1000 12/59
100 47/1000 5/47
0.10 10 34/1000 8/34
50 81/1000 10/81
100 115/1000 6/115
0.20 10 62/1000 7/62
50 158/1000 2/158
100 292/1000 0/292

Here “Power” refers to the number of times (out of 1000 replicates) the symmetric 95% credible intervals do not overlap 0, which is when we’d normally conclude we have evidence that the means of the two populations are different. Notice that when the effect and sample size are small (0.05 and 10, respectively), we would infer the wrong sign for the difference almost half of the time (18/39). We’re less likely to make a sign error when the effect is larger (7/62 for an effect of 0.20) or when the sample size is large (5/47 for a sample size of 100). But the bottom line remains the same:

Be wary of results from studies with small sample sizes, even if the effects are statistically significant.

This figure summarizes results from the simulation, and you’ll find the code in the same Github repository as the P-value code I mentioned last week: https://github.com/kholsinger/noisy-data. Remember that Gelman and Carlin (Perspectives on Psychological Science 9:641; 2014 http://dx.doi.org/10.1177/1745691614551642)  also have advice on how to tell whether you’re data are too noisy for your sample to give confidence in your inferences.

bayesian

Thought for the day

If a man walk in the woods for love of them half of each day, he is in danger of being regarded as a loafer; but if he spends his whole day as a speculator, shearing off those woods and making earth bald before her time, he is esteemed an industrious and enterprising citizen.

Henry David Thoreau, Life without principle

Edwin Way Teale Series on Nature and the Environment

Teale 2016Every year since the 1997 the University of Connecticut has hosted the Edwin Way Teale Lecture Series on Nature and the Environment. The series features distinguished natural scientists, social scientists, authors, artists, performers, and policy makers whose work informs our understanding of nature and the environment. The lectures are free and open to the public. Many lectures in recent years are also available online. You can find the full list of past lectures and links to videos (where available) at this link: http://lib.uconn.edu/about/events/nature-the-environment-the-edwin-way-teale-lecture-series-past-lectures/.

Here is a quick list of this year’s events:

  • Julien Agyeman, “Just Sustainabilities: Re-imagining e/quality, Living Within Limits”
  • Emma Rosi-Marshall, “Our Rivers on Drugs: Pharmaceuticals and Personal Care Products as Agents of Ecological Change in Aquatic Ecosystems”
  • Harriet Ritvo, “Wanting the Wild”
  • Elizabeth Kolbert, “The Sixth Extinction”
  • Maria Carmen Lemos, “Building Capacity for Adapting to Climate Change”
  • Mina Girgis, “The Nile Project”

The dates and times for the events are available on the Teale Series website. If you are close to Storrs, please stop by and join us. If you are far away or other commitments mean that you can’t join us, please check back to see if a recorded version of the presentation that interests you is available online.