
Statistical phylogeography: Migrate-N,
IMa, and ABC

As we’ve seen in our discussion of AMOVA, nucleotide sequence data seem to have
the potential to help us make not only evolutionary inferences about the sequences, but
also about the evolutionary history of the populations from which we’ve collected those se-
quences. In the mid-1990s Alan Templeton introduced nested clade analysis [15, 16, 17] as
a formal approach to using an estimate of phylogenetic relationships among haplotypes to
infer something both about the biogeographic history of the populations in which they are
contained and the evolutionary processes associated with the pattern of diversification im-
plied by the phylogenetic relationships among haplotypes and their geographic distribution.
The statistical parsimony part of NCA depends heavily on coalescent theory for calculat-
ing the “limits” of parsimony. As a result, NCA combines aspects of pure phylogenetic
inference — parsimony — with aspects of pure population genetics — coalescent theory — to
develop a set of inferences about the phylogeographic history of populations within species.
So far as I am aware, no one uses NCA any more, but it is important to mention it as an
early attempt to formalize the process of inferring the evolutionary history of populations
from nucleotide sequence data. Prior to Templeton the process of inference was really just
storytelling, storytelling that made a reasonablle amount of sense, but still storytelling. Now
everyone uses methods based directly on coalescent theory or similar approaches. Before we
get to that, though, I need to describe one complication that is taken for granted now that
first became widely recognized in the late 1980s. Pekka Pamilo and Mashatoshi Nei [13]
pointed out that the phylogenetic relationships of a single gene might be different from those
of the populations from which the samples were collected.

Gene trees versus population trees

Gene trees describe the evolutionary relationships, i.e., the phylogeny of a set of genes.
Population trees describe the phylogeny of a set of populations. We often want to infer the
history of populations from a set of genes that we collect from those populations. There are
several reasons why gene trees might not match population trees.
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• It could simply be a problem of estimation. Given a particular set of gene sequences,
we estimate a phylogenetic relationship among them. But our estimate could be wrong.
In fact, given the astronomical number of different trees possible with 50 or 60 distinct
sequences, every phylogenetic estimate is virtually certain to be wrong somewhere. We
just don’t know where. So a difference between our estimate of a gene tree and the
population tree could mean nothing more than that they actually match, but our gene
tree estimate is wrong.

• There might have been a hybridization event in the past so that the phylogenetic
history of the gene we’re studying is different from that of the populations from which
we sampled. Hybridization is especially likely to have a large impact if the locus for
which we have information is uniparentally inherited, e.g., mitochondrial or chloroplast
DNA. A single hybridization event in the distant past in which the maternal parent
was from a different population will give mtDNA or cpDNA a very different phylogeny
than nuclear genes that underwent a lot of backcrossing after the hybridization event.

• If the ancestral population was polymorphic at the time the initial split occurred alleles
that are more distantly related might, by chance, end up in the same descendant
population (see Figure 1)

As Pamilo and Nei showed, it’s possible to calculate the probability of discordance be-
tween the gene tree and the population tree using some basic ideas from coalescent theory.
That leads to a further refinement, using coalescent theory directly to examine alternative
biogeographic hypotheses.

Coalescent-based estimates of migration rate

Peter Beerli and Joe Felsenstein [4, 5] proposed a coalescent-based method to estimate
migration rates among populations. As with other analytical methods we’ve encountered
in this course, the details can get pretty hairy, but the basic idea is (relatively) simple.

Recall that in a single population we can describe the coalescent history of a sample
without too much difficulty. Specifically, given a sample of k alleles in a diploid population
with effective size Ne, the probability that the first coalescent event took place t generations
ago is

P (t|k,Ne) =

(
k(k − 1)

4Ne

)(
1− k(k − 1)

4Ne

)t−1

. (1)

Now suppose that we have a sample of alleles from K different populations. To keep things
(relatively) simple, we’ll imagine that we have a sample of n alleles from every one of these
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Figure 1: Discordance between gene and population trees as a result of ancestral polymor-
phism (from [9]).
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populations and that every population has an effective size of Ne. In addition, we’ll imagine
that there is migration among populations, but again we’ll keep it really simple. Specifically,
we’ll assume that the probability that a given allele in our sample from one population had
its ancestor in a different population in the immediately preceding generation is m.1 Under
this simple scenario, we can again construct the coalescent history of our sample. How?
Funny you should ask.

We start by using the same logic we used to construct equation (1). Specifically, we
ask “What’s the probability of an ‘event’ in the immediately preceding generation?” The
complication is that there are two kinds of events possible:

1. a coalescent event and

2. a migration event.

As in our original development of the coalescent process, we’ll assume that the population
sizes are large enough that the probability of two coalescent events in a single time step is
so small as to be negligible. In addition, we’ll assume that the number of populations and
the migration rates are small enough that the probability of more than one event of either
type is so small as to be negligible. That means that all we have to do is to calculate the
probability of either a coalescent event or a migration event and combine them to calculate
the probability of an event. It turns out that it’s easiest to calculate the probability that
there isn’t an event first and then to calculate the probability that there is an event as one
minus that.

We already know that the probability of a coalescent event in population k, is

Pk(coalescent|n,Ne) =
k(k − 1)

4Ne

,

so the probability that there is not a coalescent event in any of our K populations is

P (no coalescent|k,Ne, K) =

(
1− k(k − 1)

4Ne

)K

.

1In other words, m is the backwards migration rate, the probability that a gene in one population came
from another population in the preceding generation. This is the same migration rate we encountered
weeks ago when we discussed the balance between drift and migration. The method Beerli and Felsenstein
developed allows populations to differ in Ne and allows rates of migration among pairs of populations to
differ. It even allows the rate of migration into population A from population B to differ from the rate
of migration into population B from population A. We’re going to ignore all of those complications here,
because the math is complicated enough without them, and it gets a lot more complicated when they are
included.
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If m is the probability that there was a migration event in a particular population than the
probability that there is not a migration event involving any of our kK alleles2 is

P (no migration|k,m,K) = (1−m)kK .

So the probability that there is an event of some kind is

P (event|k,m,Ne, K) = 1− P (no coalescent|k,Ne, K)P (no migration|k,m,K) .

Now we can calculate the time back to the first event

P (event at t|k,m,Ne, K) = P (event|k,m,Ne, K) (1− P (event|k,m,Ne, K))t−1 .

We can then use Bayes theorem to calculate the probability that the event was a coalescence
or a migration and the population or populations involved. Notice, however, that if the
event is a coalescent event, we first have to pick the population in which it occurred and
then identify the pair of alleles that coalesced. Alleles have to be in the same population.
Once we’ve done all of this, we have a new population configuration and we can start over.
We continue until all of the alleles have coalesced into a single common ancestor, and then
we have the complete coalescent history of our sample.3 That’s roughly the logic that Beerli
and Felsenstein use to construct coalescent histories for a sample of alleles from a set of
populations — except that they allow effective population sizes to differ among populations
and they allow migration rates to differ among all pairs of populations. As if that weren’t
bad enough, now things start to get even more complicated.

There are lots of different coalescent histories possible for a sample consisting of n alleles
from each of K different populations, even when we fix m and Ne. Worse yet, given any
one coalescent history, there are a lot of different possible mutational histories possible. In
short, there are a lot of different possible sample configurations consistent with a given set
of migration rates and effective population size. Nonetheless, some combinations of m and
Ne will make the data more likely than others. In other words, we can construct a likelihood
for our data:

P (data|m,Ne) ∝ f(n,m,Ne, K) ,

where f(n,m,Ne, K) is some very complicated function of the probabilities we derived above.
In fact, the function is so complicated, we can’t even write it down. Fortunately, Beerli and
Felsenstein, being very clever people, figured out a way to simulate the likelihood, and

2K populations each with k alleles
3This may not seem very simple, but just think about how complicated it would be if I allowed every

population to have a different effective size and if I allowed each pair of populations to have different migration
rates between them.
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Migrate-n http://popgen.sc.fsu.edu/Migrate/Migrate-n.html provides a (relatively)
simple way that you can use your data to estimate m and Ne for a set of populations. In fact,
Migrate-N will allow you to estimate pairwise migration rates among all populations in your
sample, and since it can simulate a likelihood, if you put priors on the parameters you’re
interested in, i.e., m and Ne, you can get Bayesian estimates of those parameters rather than
maximum likelihood estimates, including credible intervals around those estimates so that
you have a good sense of how reliable your estimates are.4

There’s one further complication I need to mention, and it involves a lie I just told you.
Migrate-N can’t give you estimates of m and Ne. Remember how every time we’ve dealt
with drift and another process we always end up with things like 4Nem, 4Neµ, and the like.
Well, the situation is no different here. What Migrate-N can actually estimate are the two
parameters 4Nem and θ = 4Neµ.5 How did µ get in here when I only mentioned it in passing?
Well, remember that I said that once the computer has constructed a coalescent history, it
has to apply mutations to that history. Without mutation, all of the alleles in our sample
would be identical to one another. Mutation is what produces the diversity. So what we get
from Migrate-N isn’t the fraction of a population that’s composed of migrants. Rather, we
get an estimate of how much migration contributes to local population diversity relative to
mutation. That’s a pretty interesting estimate to have, but it may not be everything that
we want.

There’s a further complication to be aware of. Think about the simulation process I
described. All of the alleles in our sample are descended from a single common ancestor.
That means we are implicitly assuming that the set of populations we’re studying have been
around long enough and have been exchanging migrants with one another long enough that
we’ve reached a drift-mutation-migration equilibrium. If we’re dealing with a relatively small
number of populations in a geographically limited area, that may not be an unreasonable
assumption, but what if we’re dealing with populations of crickets spread across all of the
northern Rocky Mountains? And what if we haven’t sampled all of the populations that
exist?6 In many circumstances, it may be more appropriate to imagine that populations
diverged from one another at some time in the not too distant past, have exchanged genes
since their divergence, but haven’t had time to reach a drift-mutation-migration equilibrium.
What do we do then?

4If you’d like to see a comparision of maximum likelihood and Bayesian approaches, Beerli [2] provides
an excellent overview.

5Depending on the option you pick when you run Migrate you can either get θ and 4Nem or θ and
M = m/µ.

6Beerli [3] discusses the impact of “ghost” populations. He concludes that you have to be careful about
which populations you sample, but that you don’t necessarily need to sample every population. Read the
paper for the details.
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Divergence and migration

Rasmus Nielsen and John Wakely [11] consider the simplest generalization of Beerli and
Felsenstein [4, 5] you could imagine (Figure 2). They consider a situation in which you
have samples from only two populations and you’re interested in determining both how long
ago the populations diverged from one another and how much gene exchange there has been
between the populations since they diverged. As in Migrate-N mutation and migration rates
are confounded with effective population size, and the relevant parameters become:

• θa, which is 4Neµ in the ancestral population.

• θ1, which is 4Neµ in the first population.

• θ2, which is 4Neµ in the second population.

• M1, which is 2Nem1 in the first population, where m1 is the fraction of the first
population composed of migrants from the second population.

• M2, which is 2Nem2 in the second population.

• T , which is the time since the populations diverged. Specifically, if there have been t
units since the two populations diverged, T = t/2N1, where N1 is the effective size of
the first population.

Given that set of parameters, you can probably imagine that you can calculate the
likelihood of the data for a given set of parameters.7 Once you can do that you can either
obtain maximum-likelihood estimates of the parameters by maximizing the likelihood, or
you can place prior distributions on the parameters and obtain Bayesian estimates from the
posterior distribution. Either way, armed with estimates of θa, θ1, θ2, M1, M2, and T you
can say something about:

1. the effective population sizes of the two populations relative to one another and relative
to the ancestral population,

2. the relative frequency with which migrants enter each of the two populations from the
other, and

3. the time at which the two populations diverged from one another.

7As with Migrate-N, you can’t calculate the likelihood explicitly, but you can approximate it numerically.
See [11] for details.
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Figure 2: The simple model developed by Nielsen and Wakeley [11]. θa is 4Neµ in the
ancestral population; θ1 and θ2 are 4Neµ in the descendant populations; M1 and M2 are
2Nem, where m is the backward migration rate; and T is the time since divergence of the
two populations.

Keep in mind, though, that the estimates of M1 and M2 confound local effective population
sizes with migration rates. So if M1 > M2, for example, it does not mean that the fraction of
migrants incorporated into population 1 exceeds the fraction incorporated into population
2. It means that the number of migrants entering population 1 is greater than the number
entering population 2.

An example

Orti et al. [12] report the results of phylogenetic analyses of mtDNA sequences from 25
populations of threespine stickleback, Gasterosteus aculeatus, in Europe, North America,
and Japan. The data consist of sequences from a 747bp fragment of cytochrome b. Nielsen
and Wakely [11] analyze these data using their approach. Their analyses show that “[a] model
of moderate migration and very long divergence times is more compatible with the data than
a model of short divergence times and low migration rates.” By “very long divergence times”
they mean T > 4.5, i.e., t > 4.5N1. Focusing on populations in the western (population 1)
and eastern Pacific (population 2), they find that the maximum likelihood estimate ofM1 is 0,
indicating that there is little if any gene flow from the eastern Pacific (population 2) into the
western Pacific (population 1). In contrast, the maximum likelihood estimate of M2 is about
0.5, indicating that one individual is incorporated into the eastern Pacific population from
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the western Pacific population every other generation. The maximum-likelihood estimates
of θ1 and θ2 indicate that the effective size of the population eastern Pacific population is
about 3.0 times greater than that of the western Pacific population.

Extending the approach to multiple populations

Jody Hey later announced the release of IMa2.8 Building on work described in Hey and
Nielsen [7, 8], IMa2 allows you to estimate relative divergence times, relative effective popu-
lation sizes, and relative pairwise migration rates for more than two populations at a time.
That flexibility comes at a cost, of course. In particular, you have to specify the phylogenetic
history of the populations before you begin the analysis.

Phylogeography of montane grasshoppers

Lacey Knowles studied grasshoppers in the genus Melanopus. She collected 1275bp of DNA
sequence data from cytochrome oxidase I (COI) from 124 individuals of M. oregonensis
and two outgroup species. The specimens were collected from 15 “sky-island” sites in the
northern Rocky Mountains (see Figure 3; [9]). Two alternative hypotheses had been proposed
to describe the evolutionary relationships among these grasshoppers (refer to Figure 4 for a
pictorial representation):

• Widespread ancestor: The existing populations might represent independently de-
rived remnants of a single, widespread population. In this case all of the populations
would be equally related to one another.

• Multiple glacial refugia: Populations that shared the same refugium will be closely
related while those that were in different refugia will be distantly related.

As is evident from Figure 4, the two hypotheses have very different consequences for the
coalescent history of alleles in the sample. Since the interrelationships between divergence
times and time to common ancestry differ so markedly between the two scenarios, the pattern
of sequence differences found in relation to the geographic distribution will differ greatly
between the two scenarios.

Using techniques described in Knowles and Maddison [10], Knowles simulated gene trees
under the widespread ancestor hypothesis. She then placed them within a population tree
representing the multiple glacial refugia hypothesis and calculated a statistic, s, that mea-
sures the discordance between a gene tree and the population tree that contains it. This

8Available from https://bio.cst.temple.edu/~hey/software/software.htm.
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Figure 3: Collection sites for Melanopus oregonensis in the northern Rocky Moun-
tains (from [9]).

Figure 4: Pictorial representations of the “widespread ancestor” (top) and “glacial refugia”
(bottom) hypotheses (from [9]).
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gave her a distribution of s under the widespread ancestor hypothesis. She compared the s
estimated from her actual data with this distribution and found that the observed value of
s was only 1/2 to 1/3 the size of the value observed in her simulations.9 Let’s unpack that
a bit.

• Knowles estimated the phylogeny of the haplotypes in her sample. s is the estimated
minimum number of among-population migration events necessary to account for where
haplotypes are currently found given the inferred phylogeny [14]. Let’s call the s
estimated from the data sobs.

• Then she simulated a neutral coalescence process in which the populations were derived
from a single, widespread ancestral population. For each simulation she rearranged the
data so that populations were grouped into separate refugia and estimated ssim from
the rearranged data, and she repeated this 100 times for several different times since
population splitting.

The results are shown in Figure 5. As you can see, the observed s value is much smaller than
any of those obtained from the coalescent simulations. That means that the observed data
require far fewer among-population migration events to account for the observed geographic
distribution of haplotypes than would be expected with independent origin of the populations
from a single, widespread ancestor. In short, Knowles presented strong evidence that her
data are not consistent with the widespread ancestor hypothesis.

Approximate Bayesian computation: motivation

Approximate Bayesian Computation (ABC for short), extends the basic idea Knowles used to
consider more complicated scenarios. The IMa approach developed by Nielsen, Wakely, and
Hey is potentially very flexible and very powerful [7, 8, 11]. It allows for non-equilibrium
scenarios in which the populations from which we sampled diverged from one another at
different times, but suppose that we think our populations have dramatically increased in
size over time (as in humans) or dramatically changed their distribution (as with an invasive
species). Is there a way to use genetic data to gain some insight into those processes? Would
I be asking that question if the answer were “No”?

9The discrepancy was largest when divergence from the widespread ancestor was assumed to be very
recent.
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Figure 5: Distribution of the observed minimum number of among-population migration
events, s, and the expected minimum number of migration events under the “widespread
ancestor” hypothesis. (from [9]).
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An example

Let’s change things up a bit this time and start with an example of a problem we’d like to
solve first. Once you see what the problem is, then we can talk about how we might go about
solving it. The case we’ll discuss is the case of the cane toad, Bufo marinus, in Australia.

You may know that the cane toad is native to the American tropics. It was purposely
introduced into Australia in 1935 as a biocontrol agent, where it has spread across an area
of more than 1 million km2. Its range is still expanding in northern Australia and to a lesser
extent in eastern Australia (Figure 6).10 Estoup et al. [6] collected microsatellite data from
30 individuals in each of 19 populations along roughly linear transects in the northern and
eastern expansion areas.

With these data they wanted to distinguish among five possible scenarios describing the
geographic spread:

• Isolation by distance: As the expansion proceeds, each new population is founded
by or immigrated into by individuals with a probability proportional to the distance
from existing populations.

• Differential migration and founding: Identical to the preceding model except
that the probability of founding a population may be different from the probability of
immigration into an existing population.

• “Island” migration and founding: New populations are established from existing
populations without respect to the geographic distances involved, and migration occurs
among populations without respect to the distances involved.

• Stepwise migration and founding with founder events: Both migration and
founding of populations occurs only among immediately adjacent populations. More-
over, when a new population is established, the number of individuals involved may
be very small.

• Stepwise migration and founding without founder events: Identical to the
preceding model except that when a population is founded its size is assumed to be
equal to the effective population size.

That’s a pretty complex set of scenarios. Clearly, you could use Migrate or IMa2 to
estimate parameters from the data Estoup et al. [6] report, but would those parameters allow
you to distinguish those scenarios? Not in any straightforward way that I can see. Neither

10All of this information is from the introduction to [6].
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Figure 6: Maps showing the expansion of the cane toad population in Australia since its
introduction in 1935 (from [6]).
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Migrate nor IMa2 distinguishes between founding and migration events for example. And
with IMa2 we’d have to specify the relationships among our sampled populations before we
could make any of the calculations. In this case we want to test alternative hypotheses of
population relationship. So what do we do?

Approximate Bayesian Computation

Well, in principle we could take an approach similar to what Migrate and IMa2 use. Let’s
start by reviewing what we did last time11 with Migrate and IMa2. In both cases, we knew
how to simulate data given a set of mutation rates, migration rates, local effective population
sizes, and times since divergence. Let’s call that whole, long string of parameters ξ and our
big, complicated data set X. If we run enough simulations, we can keep track of how many
of those simulations produce data identical to the data we collected. With those results
in hand, we can estimate P (X|ξ), the likelihood of the data, as the fraction of simulations
that produce data identical to the data we collected.12 In principle, we could take the
same approach in this, much more complicated, situation. But the problem is that there
are an astronomically large number of different possible coalescent histories and different
allelic configurations possible with any one population history both because the population
histories being considered are pretty complicated and because the coalescent history of every
locus will be somewhat different from the coalescent history at other loci. As a result, the
chances of getting any simulated samples that match our actual samples is virtually nil, and
we can’t estimate P (X|ξ) in the way we have so far.

Approximate Bayesian computation is an approach that allows us to get around this
problem. It was introduced by Beaumont et al. [1] precisely to allow investigators to get
approximate estimates of parameters and data likelihoods in a Bayesian framework. Again,
the details of the implementation get pretty hairy,13 but the basic idea is relatively straight-
forward.14

1. Calculate “appropriate” summary statistics for your data set, e.g., pairwise estimates of
φST (possibly one for every locus if you’re using microsatellite or SNP data), estimates

11More accurately, what Peter Beerli, Joe Felsenstein, Rasmus Nielsen, John Wakeley, and Jody Hey did.
12The actual implementation is a bit more involved than this, but that’s the basic idea.
13You’re welcome to read the Methods in [1], and feel free to ask questions if you’re interested. I have to

confess that there’s a decent chance I won’t be able to answer your question until I’ve done some further
studying. I’ve only used ABC a little, and I haven’t used it for anything that I’ve published — yet.

14OK. This maybe calling it “relatively straightforward” is misleading. Even this simplified outline is
fairly complicated, but compared to some of what you’ve already survived in this course, it may not look
too awful.
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of within population diversity, counts of the number of segregating sites (for nucleotide
sequence data, both within each population and across the entire sample) or counts of
the number of segregating alleles (for microsatellite data). Call that set of summary
statistics S.

2. Specify a prior distribution for the unknown parameters, ξ.

3. Pick a random set of parameter values, ξ′ from the prior distribution and simulate a
data set for that set of parameter values.

4. Calculate the same summary statistics for the simulated data set as you calculated for
your actual data. Call that set of statistics S ′.

5. Calculate the distance between S and S ′.15 Call it δ. If it’s less than some value you’ve
decided on, δ∗, keep track of S ′ and the associated ξ′ and δ. Otherwise, throw all of
them away and forget you ever saw them.

6. Return to step 2 and repeat until you have accepted a large number of pairs of S ′ and
ξ′.

Now you have a bunch of S ′s and a bunch of ξ′s that produced them. Let’s label them
Si and ξi, and let’s remember what we’re trying to do. We’re trying to estimate ξ for our
real data. What we have from our real data is S. So far it seems as if we’ve worked our
computer pretty hard, but we haven’t made any progress.

Here’s where the trick comes in. Suppose we fit a regression to the data we’ve simulated

ξi = α + Siβ + ε ,

where α is an intercept, β is a vector of regression coefficients relating each of the summary
statistics to ξ, and ε is an error vector.16 Once we’ve fit this regression, we can use it to
predict what ξ should be in our real data, namely

ξ = α + Sβ ,

where the S here corresponds to our observed set of summary statistics. If we throw in
some additional bells and whistles, we can approximate the posterior distribution of our

15You could use any one of a variety of different distance measures. A simple Euclidean distance might
be useful, but you could also try something more complicated, like a Mahalanobis distance.

16I know what you’re thinking to yourself now. This doesn’t sound very simple. Trust me. It is as simple
as I can make it. The actual procedure involves local linear regression. I’m also not telling you how to go
about picking δ or how to pick “appropriate” summary statistics. There’s a fair amount of “art” involved
in that.
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parameters. With that we can get not only a point estimate for ξ, but also credible intervals
for all of its components.

Back to the real world17

OK. So now we know how to do ABC, how do we apply it to the cane toad data. Well, using
the additional bells and whistles I mentioned, we end up with a whole distribution of δ for
each of the scenarios we try. The scenario with the smallest δ provides the best fit of the
model to the data. In this case, that corresponds to model 4, the stepwise migration with
founder model, although it is only marginally better than model 1 (isolation by distance)
and model 2 (isolation by distance with differential migration and founding) in the northern
expansion area (Figure 7).

Of course, we also have estimates for various parameters associated with this model:

• Nes : the effective population size when the population is stable.

• Nef : the effective population size when a new population is founded.

• FR: the founding ratio, Nes/Nef .

• m: the migration rate.

• Nesm: the effective number of migrants per generation.

The estimates are summarized in Table 1. Although the credible intervals are fairly
broad,18 there are a few striking features that emerge from this analysis.

• Populations in the northern expansion area are larger, than those in the eastern ex-
pansion region. Estoup et al. [6] suggest that this is consistent with other evidence
suggesting that ecological conditions are more homogeneous in space and more favor-
able to cane toads in the north than in the east.

• A smaller number of individuals is responsible for founding new populations in the
east than in the north, and the ratio of “equilibrium” effective size to the size of the
founding population is bigger in the east than in the north. (The second assertion is
only weakly supported by the results.)

17Or at least something resembling the real world
18And notice that these are 90% credible intervals, rather than the conventional 95% credible intervals,

which would be even broader.
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Figure 7: Posterior distribution of δ for the five models considered in Estoup et al. [6].
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Parameter area mean (5%, 90%)
Nes east 744 (205, 1442)

north 1685 (526, 2838)
Nef east 78 (48, 118)

north 311 (182, 448)
FR east 10.7 (2.4, 23.8)

north 5.9 (1.6, 11.8)
m east 0.014 (6.0× 10−6, 0.064)

north 0.117 (1.4× 10−4, 0.664)
Nesm east 4.7 (0.005, 19.9)

north 188 (0.023, 883)

Table 1: Posterior means and 90% credible intervals for parameters of model 4 in the eastern
and northern expansion areas of Bufo marinus.

• Migration among populations is more limited in the east than in the north.

As Estoup et al. [6] suggest, results like these could be used to motivate and calibrate
models designed to predict the future course of the invasion, incorporating a balance between
gene flow (which can reduce local adaptation), natural selection, drift, and colonization of
new areas.

Limitations of ABC

If you’ve learned anything by now, you should have learned that there is no perfect method.
An obvious disadvantage of ABC relative to either Migrate or IMa2 is that it is much more
computationally intensive.

• Because the scenarios that can be considered are much more complex, it simply takes
a long time to simulate all of the data.

• In the last few years, one of the other disadvantages — that you had to know how to do
some moderately complicated scripting to piece together several different packages in
order to run analysis — has become less of a problem. popABC (http://code.google.
com/p/popabc/, DIYABC (http://www1.montpellier.inra.fr/CBGP/diyabc/), and
the abc library in R make it relatively easy19 to perform the simulations.

19Emphasis on “relatively”.
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• Selecting an appropriate set of summary statistics isn’t easy, and it turns out that
which set is most appropriate may depend on the value of the parameters that you’re
trying to estimate and the which of the scenarios that you’re trying to compare is
closest to the actual scenario applying to the populations from which you collected the
data. Of course, if you knew what the parameter values were and which scenario was
closest to the actual scenario, you wouldn’t need to do ABC in the first place.

• In the end, ABC allows you to compare a small number of evolutionary scenarios. It
can tell you which of the scenarios you’ve imagined provides the best combination of
fit to the data and parsimonious use of parameters (if you choose model comparison
statistics that include both components), but it takes additional work to determine
whether the model is adequate, in the sense that it does a good job of explaining the
data. Moreover, even if you determine that the model is adequate, you can’t exclude
the possibility that there are other scenarios that might be equally adequate — or even
better.
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