
Statistical phylogeography: Admixture
graphs and sparg

When I introduced the coalescent several weeks ago, I mentioned the “Out of Africa”
hypothesis — the hypothesis that anatomically modern humans evolved in Africa and spread
from there throughout the rest of the world. Three decades of research have strengthened
support for that hypothesis, and it is now widely accepted that anatomically modern human
populations left Africa and moved into other parts of the world about 50,000 years ago [4].
As they expanded, they interacted with archaic human populations, e.g., Neanderthals and
Denisovans. And when human populations interact, interbreeding often occurs. The result
is that 1-3 percent of human genomes from outside of sub-Saharan Africa show evidence of
Neanderthal ancestry [11] and that as much as 5 or 6 percent of the human genomes from
Oceania show evidence of ancestry from Denisovans [6]. When we visualize these relation-
ships (Figure 1), the result no longer looks like a simple tree. There are lines connecting
different branches representing times when there was some degree of interbreeding among
populations that had previously diverged. You may have encountered methods for inferring
phylogenies in previous courses. In this course we saw how STRUCTURE can be used to esti-
mate patterns of admixture. How do we go about estimating trees that are admixed? Funny
you should ask.

Admixture graphs

Pickrell and Pritchard [10] described the most widely used approach to estimating admixture
graphs. It is implemented in TreeMix. At about the same time Patterson et al. [9] described a
related method. I’m going to focus on the TreeMix approach because I am more comfortable
with the underlying model.1 Unfortunately, if you want to use TreeMix, you’ll have to be
comfortable with compiling C++ programs from source (or find a friend who can help you
or who can share a copy).2

1If you’re curious about why I’m more comfortable with the Pickrell and Pritchard approach, feel free to
ask.

2The most recent version of the TreeMix manual notes that “TreeMix should run on any Unix or Unix-like
(e.g., Linux or Mac OS X) system. It may be more difficult to get it compiled under Windows. Notice that

c© 2010–2023 Kent E. Holsinger



Figure 1: Periods of introgression in humah history (from [1]).

The basic idea behind Treemix is not too complicated, although it would be a stretch
to say that it’s simple. We start by assuming that the allele frequencies are changing as a
result of genetic drift. Results going back to Kimura [5] tell us that the variance in allele
frequency is

Var(pt) = po(1− p0)
(
1− e−t/2Ne

)
,

where pt is the allele frequency in the population at time t, po is the initial allele frequency, t
is the number of generations, and Ne is the effective population size. So long as the effective
population size is large enough that allele frequency changes are relatively small from gener-
ation to generation and so long as po is not “too close” to 0 or 1, then we can approximate
the probability distribution of allele frequencies at time t with a normal distribution:

P(pt|po, t, Ne) ∼ N
(
po, po(1− po)

(
t

2Ne

))
.

Now suppose we have a series of four populations related like those shown in Figure 2. As
you can see, this example shows populations that have a simple tree-like relationship. Here’s
where the fun starts.

regardless of operating system, you’ll also need to install the GNU Scientific Library and the Boost Graph
Library.”
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Figure 2: A purely tree-like relationship among four hypothetical populations. The allele
frequencies in each population are represented by Xi. The drift parameter on the x-axis is
t/2Ne, i.e., it’s measuring time from the root of the tree to the tips in units of 1/2Ne. A
part of a figure in [10].
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It’s a well known fact [3] that the variance in allele frequencies (Xi in the figure) are
simply

Var(X1) = (c2 + c6)XA(1−XA)

Var(X2) = (c2 + c5)XA(1−XA)

Var(X3) = (c1 + c3)XA(1−XA)

Var(X4) = (c1 + c4)XA(1−XA) ,

where ci = ti
2N

(i)
e

, ti is the time associated with branch i and N (i)
e is the effective size of the

population associated with branch i. It’s obvious from looking at the tree that populations
1 and 2 have been evolving independently from populations 3 and 4 from the start, while 1
and 2 have been evolving independently of one another for a shorter period of time. As a
result, we expect allele frequencies in populations 1 and 2 to be more similar than those in
populations 3 and 4. In fact, Pickrell and Pritchard point out that we can write the various
covariances down pretty simply too:

Cov(X1, X2) = c2XA(1−XA)

Cov(X1, X3) = 0

Cov(X1, X4) = 0

Cov(X2, X3) = 0

Cov(X2, X4) = 0

Cov(X3, X4) = c1XA(1−XA) .

As a result, we can write down a multivariate probability distribution that describes all
of the allele frequencies simultaneously, given the same caveats as above about the normal
distribution.

P(pt|p0, t,Ne) ∼ MVN(p0,Σ) ,

where boldface refers to vectors, MVN refers to the multivariate normal distribution, and
Σ is the covariance matrix of allele frequencies. Since we can write down that probability
distribution, you can probably imagine that it’s possible to estimate the likelihood of our
data given a particular tree. To get a maximum likelihood estimate of how our populations
are related, assuming there’s no migration, we simply have to compare the likelihoods across
all possible trees and choose the one that’s most likely.3

3If you know anything about estimating phylogenies, you know there is tremendous complexity buried in
that “simply have to compare.” Also notice that if we can get a maximum likelihood estimate, we can also
get a full Bayesian posterior “simply” by providing the appropriate priors.
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Now suppose we allow migration from one of our populations into another. The simple
example Pickrell and Pritchard provide (Figure 3 shows a single migration from the lineage
leading to population 2 into population 3, labeling the source population as Y and the
destination population as Z. As you can see in Panel D of the figure, the migration event
changes the structure of the covariance matrix. Since all the migration event does is to
change the covariance matrix, we can once again explore parameter space and find the
network that maximizes the likelihood. When we do so, not only do we have estimates for
population relationships and effective population sizes but also for the timing and direction of
migration events. Estimating admixture is, however, even more challenging than estimating
a population phylogeny. The number of alternative configurations explodes rapidly with
more than 4-5 populations, making heuristic searches necessary. Molloy et al. [7] recently
described a new approach that builds on TreeMix and seems to avoid getting stuck in a local
optimum. Since the basic approach is the same and this isn’t a course in computational
biology, we won’t discuss it further, but you should investigate it if you use admixture
graphs in any of your work.

Estimating dispersal and ancestral geography

As you can see, admixture graphs provide a very flexible approach to understanding the
history of populations. But they do have one significant limitation. We have to know ahead
of time which individuals belong in which populations, just as we did with F -statistics, and
just as with STRUCTURE gave us a way to look at population structure without pre-assigning
individuals to populations, there’s a way of looking at ancestry that uses individuals rather
than pre-defined populations [8]. As with admixture graphs, the mathematics lying behind
the approach gets pretty hairy, but the basic idea is pretty simple (Figure 4).

• At any position along a genome, we can construct a phylogenetic tree showing the
genealogical relationship among all chromosomes in the sample at that location.4

• Individuals disperse randomly through space with the distance of an offspring from
its mother given by a bivariate normal distribution with a mean of 0 and a covariance
matrix Σ. In any real sample, glacial migrations, barriers to dispersal, or the opening of
new habitat will cause some aspects of the dispersal history not to be well approximated
by this model of Brownian motion, so we only use parts of the tree from the first step
that are more recent than these events to estimate dispersal parameters.5

4Notice that I wrote “chromosomes”, not individuals, because the different allele copies within an indi-
vidual may have different genealogical histories.

5Notice that while this approach means that the Brownian motion model for dispersal is a better fit to
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Figure 3: Illustrating the covariance matrices of admixed and unadmixed populations. From
[10].
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Figure 4: Conceptual overview of the process for estimating the spatial position of ancestors
(from [8]). 7



• Given the estimates of time to a common ancestor between two individuals, the spatial
location of those individuals, and the dispersal rate, we can estimate the spatial location
of the ancestor.

This method implicitly assumes that differences are selectively neutral.6 Although we
could try this approach with data from only one locus, the results are unlikely to be infor-
mative for two reasons. First, there is a lot of uncertainty associated with our estimate of
phylogenetic relationships at one locus. Second, because the coalescent history of unlinked
loci will differ even though the effective population size and the patterns of migration that
affect different loci are the same. But since the patterns of migration are the same across
different loci and since the effective population size is the same across loci, we can combine
information across loci to get better estimates of the dispersal rates. Since we estimate the
location of ancestors at every locus, we end up with a distribution of ancestral locations
rather than a single estimate. Osmond and Coop also point out that we can define different
“epochs” in which to estimate dispersal rates and ancestors. This allows the dispersal rate
to vary over time. All of this is available in a Python package, sparg, which should run on
any platform with phython3 (https://github.com/mmosmond/sparg).

An example from Arabidopsis

Plant geneticists have studied Arabidopsis thaliana extensively. Alonso-Blanco et al. [2]
reported results derived from sequencing 1135 different wild accessions derived from Eurasia
and North Africa. Osmond and Coop used sparg to explore historical patterns of dispersal
and the geographical location of ancestors using this data set. They first estimated dispersal
rates in both a one-epoch model and in multi-epoch models. As you can see in Figure 5,
the estimates of dispersal rates are very similar across all of the loci. In addition, the
per-generation rate of east-west dispersal (σ2

long) is about 10 times higher than north-south
dispersal (σ2

lat), and the correlation between the two rates (ρ) is relatively small. Comparison
among the scenarios suggests that the 4-epoch model is the best fit to the data, suggesting
that the rate of dispersal in the last 10 generations is substantially greater than it was earlier
and that dispersal between 10 and 1000 generations ago is greater than it was more than
1000 generations ago.

Now that we have a good idea when dispersal happened, let’s see where it happened. As
you can see in Figure 6, much of the estimated dispersal over the last 10-100 generations

the data, it also means that we can’t use this approach to study events that involve ancient dispersal, like
early modern human movements out of Africa.

6Remember: This doesn’t mean that there aren’t any fitness differences, only that the product of the
selection coefficient associated with any of those differences and the population size is less than one, implying
that the evolutionary dynamics are rougly similar to those of a purely neutral locus.
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Figure 5: Estimates of dispersal rates in Arabidopsis thaliana in both one-epoch (panel A)
and multi-epoch (panel B) models (from [8]).
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didn’t move individuals very far. In addition, it’s a little hard to see, but if you zoom in on
the figure and focus on the purple colors, you’ll notice that most of the lines leading from
the dots (current locations) point towards the center of Europe. This pattern is particularly
clear in for the 100-generation ago ancestral location of samples from Scandinavia. There
are, however, a few individuals that moved very long distances. Individual 9627, for example,
seems to have an ancestor 10 generations ago that was more than 3000km to the east of its
current location, and its ancestor seems to have been more than 4000km to the east 100
generations ago.
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