
Resemblance among relatives

Introduction

Just as individuals may differ from one another in phenotype because they have different
genotypes, because they developed in different environments, or both, relatives may resemble
one another more than they resemble other members of the population because they have
similar genotypes, because they developed in similar environments, or both. In an experi-
mental situation, we typically try to randomize individuals across environments. If we are
successful, then any tendency for relatives to resemble one another more than non-relatives
must be due to similarities in their genotypes.

Using this insight, we can develop a statistical technique that allows us to determine how
much of the variance among individuals in phenotype is a result of genetic variance and how
much is due to environmental variance. Remember, we can only ask about how much of the
variability is due to genetic differences, and we can only do so in a particular environment
and with a particular set of genotypes, and we can only do it when we randomize genotypes
across environments.

An outline of the approach

The basic approach to the analysis is either to use a linear regression of offspring phenotype on
parental phenotype, which as we’ll see estimates h2n, or to use a nested analysis of variance.
One of the most complete designs is a full-sib, half-sib design in which each male sires
offspring from several dams but each dam mates with only one sire.

The offspring of a single dam are full-sibs (they are nested within dams). Differences
among the offspring of dams indicates that there are differences in maternal “genotype” in
the trait being measured.1

The offspring of different dams mated to a single sire are half-sibs. Differences among
the offspring of sires indicates that there are differences in paternal “genotype” in the trait

1Assuming that we’ve randomized siblings across environments. If we haven’t, siblings may resemble one
another because of similarities in the environment they experienced, too.
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Maternal Offspring genotype
genotype Frequency A1A1 A1A2 A2A2

A1A1 p2 p q 0
A1A2 2pq p

2
1
2

q
2

A2A2 q2 0 p q

Table 1: Half-sib family structure in a population with genotypes in Hardy-Weinberg pro-
portions.

being measured.2

As we’ll see, this design has the advantage that it allows both additive and dominance
components of the genetic variance to be estimated. It has the additional advantage that
we don’t have to assume that the distribution of environments in the offspring generation is
the same as it was in the parental generation. To use the regression approach to estimate
heritability, we have to assume that the distribution of environmental effects is the same in
parental and offspring generations.

The gory details

OK, so I’ve given you the basic idea. Where does it come from, and how does it work?
Funny you should ask. The whole approach is based on calculations of the degree to which
different relatives resemble one another. For these purposes we’re going to continue our focus
on phenotypes influenced by one locus with two alleles, and we’ll do the calculations in detail
only for half sib families. We start with something that may look vaguely familiar.3 Take a
look at Table 1.

Note that the probabilities in Table 1 are appropriate only if the progeny are from half-
sib families. If the progeny are from full-sib families, we must specify the frequency of each
of the nine possible matings (keeping track of the genotype of both mother and father) and
the offspring that each will produce.4

2You’ll see the reason for the quotes around genotype in this paragraph and the last a little later. It’s a
little more complex than what I’ve suggested.

3Remember our mother-offspring combinations with Zoarces viviparus?
4To check your understanding of all of this, you might want to try to produce the appropriate table.
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Covariance of two random variables

Let pxy be the probability that random variable X takes the value x and random variable Y
takes the value y. Then the covariance between X and Y is:

Cov(X, Y ) =
∑

pxy(x− µx)(y − µy) ,

where µx is the mean of X and µy is the mean of Y . The covariance between two random
variables is a measure of how much they vary together — covary. If the covariance is large
and positive, they tend to vary in the same way. Positive deviations from the mean in one
are associated with positive deviations from the mean in the other, and negative deviations
are similarly associated. If the covariance is large and negative, they tend to vary in opposite
ways. Positive deviations from the mean in one variable are associated with negative devi-
ations in the other, and vice versa. If the covariance is small, it means there isn’t a strong
tendency for deviations from the mean in one variable to be associated with deviations in
the other.

Covariance between half-siblings

Here’s how we can calculate the covariance between half-siblings: First, imagine selecting
huge number of half-sibs pairs at random. The phenotype of the first half-sib in the pair
is a random variable (call it S1), as is the phenotype of the second (call it S2). The mean
of S1 is just the mean phenotype in all the progeny taken together, x̄. Similarly, the mean
of S2 is just x̄.5 Now with one locus, two alleles we have three possible phenotypes: x11
(corresponding to the genotype A1A1), x12 (corresponding to the genotype A1A2), and x22
(corresponding to the genotype A2A2). So all we need to do to calculate the covariance
between half-sibs is to write down all possible pairs of phenotypes and the frequency with
which they will occur in our sample of randomly chosen half-sibs based on the frequencies
in Table 1 above and the frequency of maternal genotypes. It’s actually a bit easier to keep
track of it all if we write down the frequency of each maternal genotype and the frequency
with which each possible phenotypic combination will occur in her progeny.

Cov(S1, S2) = p2[p2(x11 − x̄)2 + 2pq(x11 − x̄)(x12 − x̄) + q2(x12 − x̄)2]

+2pq[
1

4
p2(x11 − x̄)2 +

1

2
p(x11 − x̄)(x12 − x̄) +

1

2
pq(x11 − x̄)(x22 − x̄)

5The reasoning here gets a little tricky, since the mean of different half-sib families may be different.
Think about it this way. We picked this particular half-sib family at random from among all half-sib families
in the population. It takes a bit of algebra to show it, but the mean phenotype of a randomly chosen half-sib
family is x̄, meaning that x̄ is the mean phenotype for both S1 and S2. They’re part of the same family, so
they share the same family mean.
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+
1

4
(x12 − x̄)2 +

1

2
q(x12 − x̄)(x22 − x̄) +

1

4
q2(x22 − x̄)2]

+q2[p2(x12 − x̄)2 + 2pq(x12 − x̄)(x22 − x̄) + q2(x22 − x̄)2]

= p2[p(x11 − x̄) + q(x12 − x̄)]2

+2pq[
1

2
p(x11 − x̄) +

1

2
q(x12 − x̄) +

1

2
p(x12 − x̄) +

1

2
q(x22 − x̄)]2

+q2[p(x12 − x̄) + q(x22 − x̄)]2

= p2[px11 + qx12 − x̄]2

+2pq
[
1

2
(px11 + qx12 − x̄) +

1

2
(px12 + qx22 − x̄)

]2
+q2[px12 + qx22 − x̄]2

= p2
[
α1 −

x̄

2

]2
+ 2pq

[
1

2
(α1 −

x̄

2
) +

1

2
(α2 −

x̄

2
)
]2

+ q2
[
α2 −

x̄

2

]2
= p2

[
1

2
(2α1 − x̄)

]2
+ 2pq

[
1

2
(α1 + α2 − x̄)

]2
+ q2

[
1

2
(2α2 − x̄)

]2
=

(
1

4

) [
p2(2α1 − x̄)2 + 2pq[(α1 + α2 − x̄)]2 + q2(2α2 − x̄)2

]
=

(
1

4

)
Va

A numerical example

Now we’ll return to an example we saw earlier (Table 2). This set of genotypes and phe-
notypes may look familiar. It is the same one we encountered earlier when we calculated
additive and dominance components of variance. Let’s assume that p = 0.4. We know from
our earlier calculations that

x̄ = 54.4

Va = 1505.28

Vd = 207.36 .

We can also calculate the numerical version of Table 1, which you’ll find in Table 3.
So now we can follow the same approach we did before and calculate the numerical value

of the covariance between half-sibs in this example:

Cov(S1, S2) = [(0.4)2(0.16) + (0.2)2(0.48)](100 − 54.4)2

+[(0.6)2(0.16) + (0.5)2(0.48) + (0.4)2(0.36)](80 − 54.4)2
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Genotype A1A1 A1A2 A2A2

Phenotype 100 80 0

Table 2: An example of a non-additive relationship between genotypes and phenotypes.

Maternal Offspring genotype
genotype Frequency A1A1 A1A2 A2A2

A1A1 0.16 0.4 0.6 0.0
A1A2 0.48 0.2 0.5 0.3
A2A2 0.36 0.0 0.4 0.6

Table 3: Mother-offspring combinations (half-sib) when the frequency of A1 is 0.4.

+[(0.3)2(0.48) + (0.6)2(0.36)](0 − 54.4)2

+2[(0.4)(0.6)(0.16) + (0.2)(0.5)(0.48)](100 − 54.4)(80 − 54.4)

+2(0.2)(0.3)(0.48)(100 − 54.4)(0 − 54.4)

+2[(0.5)(0.3)(0.48) + (0.4)(0.6)(0.36)](80 − 54.4)(0 − 54.4)

= 376.32

=
(

1

4

)
1505.28 .

Covariances among relatives

Well, if we can do this sort of calculation for half-sibs, you can probably guess that it’s also
possible to do it for other relatives. I won’t go through all of the calculations, but the results
for common forms of relationship are summarized in Table 4

MZ twins (CovMZ) Va + Vd
Parent-offspring (CovPO)1

(
1
2

)
Va

Full sibs (CovFS)
(
1
2

)
Va +

(
1
4

)
Vd

Half sibs (CovHS)
(
1
4

)
Va

1One parent or mid-parent.

Table 4: Genetic covariances among relatives.
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Estimating heritability

Galton introduced the term regression to describe the inheritance of height in humans. He
noted that there is a tendency for adult offspring of tall parents to be tall and of short parents
to be short, but he also noted that offspring tended to be less extreme than the parents.6 He
described this as a “regression to mediocrity,” and statisticians adopted the term to describe
a standard technique for describing the functional relationship between two variables.

Regression analysis

Measure the parents. Regress the offspring phenotype on: (1) the phenotype of one parent or
(2) the mean of the parental phenotypes. In either case, the covariance between the parental

phenotype and the offspring genotype is
(
1
2

)
Va. Now the regression coefficient between one

parent and offspring, bP→O, is

bP→O =
CovPO

Var(P )

=

(
1
2

)
Va

Vp

=
(

1

2

)
h2N .

In short, the slope of the regression line is equal to one-half the narrow sense heritability. In
the regression of offspring on mid-parent value,

Var(MP ) = Var
(
M + F

2

)
=

1

4
Var(M + F )

=
1

4
(V ar(M) + V ar(F ))

=
1

4
(2Vp)

=
1

2
Vp .

6It’s worth noting that Galton is often “credited” with establishing the field of eugenics. He
was a proponent of encouraging the “best” people to marry one another to “improve” the human
race. In 2020, University College London renamed two lecture theaters and a building that bore the
names of Francis Galton and Karl Pearson (https://www.theguardian.com/education/2020/jun/19/
ucl-renames-three-facilities-that-honoured-prominent-eugenicists).
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Composition of
Source d.f. Mean square mean square
Among sires s− 1 MSS σ2

W + kσ2
D + dkσ2

s

Among dams s(d− 1) MSD σ2
W + kσ2

D

(within sires)
Within progenies sd(k − 1) MSW σ2

W

s = number of sires
d = number of dams per sire
k = number of offspring per dam

Table 5: Analysis of variance table for a full-sib analysis of quantitative genetic variation.

Thus, bMP→O = 1
2
Va/

1
2
Vp = h2N . In short, the slope of the regression line is equal to the

narrow sense heritability.

Sib analysis

Mate a number of males (sires) with a number of females (dams). Each sire is mated to
more than one dam, but each dam mates only with one sire. Do an analysis of variance on
the phenotype in the progeny, treating sire and dam as main effects. The result is shown in
Table 5.

Now we need some way to relate the variance components (σ2
W , σ2

D, and σ2
S) to Va, Vd,

and Ve.
7 How do we do that? Well,

Vp = σ2
T = σ2

S + σ2
D + σ2

W .

σ2
S estimates the variance among the means of the half-sib families fathered by each of the

different sires or, equivalently, the covariance among half-sibs.8

σ2
S = CovHS

=
(

1

4

)
Va .

7σ2
W , σ2

D, and σ2
S are often referred to as the observational components of variance, because they are

estimated from observations we make on phenotypic variation. Va, Vd, and Ve are often referred to as the
causal components of variance, because they represent the genetic and environmental influences on trait
expression.

8To see why consider this is so, consider the following: The mean genotypic value of half-sib families with
an A1A1 mother is px11 + qx12; with an A1A2 mother, px11/2 + qx12/2 + px12/2 + qx22/2; with an A2A2

mother, px12 + qx22. The equation for the variance among these means is identical to the equation for the
covariance among half-sibs.
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Now consider the within progeny component of the variance, σ2
W . In general, it can be shown

that any among group variance component is equal to the covariance among the members
within the groups.9 Thus, a within group component of the variance is equal to the total
variance minus the covariance within groups. In this case,

σ2
W = Vp − CovFS

= Va + Vd + Ve −
[(

1

2

)
Va +

(
1

4

)
Vd

]
=

(
1

2

)
Va +

(
3

4

)
Vd + Ve .

There remains only σ2
D. Now σ2

W = Vp − CovFS, σ2
S = CovHS, and σ2

T = Vp. Thus,

σ2
D = σ2

T − σ2
S − σ2

W

= Vp − CovHS − (Vp − CovFS)

= CovFS − CovHS

=
[(

1

2

)
Va +

(
1

4

)
Vd

]
−
(

1

4

)
Va

=
(

1

4

)
Va +

(
1

4

)
Vd .

So if we rearrange these equations, we can express the genetic components of the pheno-
typic variance, the causal components of variance, as simple functions of the observational
components of variance:

Va = 4σ2
S

Vd = 4(σ2
D − σ2

S)

Ve = σ2
W − 3σ2

D + σ2
S .

Furthermore, the narrow-sense heritability is given by

h2N =
4σ2

s

σ2
S + σ2

D + σ2
W

.

9With xij = ai + εij , where ai is the mean group effect and εij is random effect on individual j in group i
(with mean 0), Cov(xij , xik) = E(ai + εij −µ)(ai + εik −µ) = E((ai −µ2) + ai(εij + εik) + εijεik) = V ar(A).
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Composition of
Source d.f. Mean square mean square
Among sires 70 17.10 σ2

W + k′σ2
D + dk′σ2

s

Among dams 118 10.79 σ2
W + kσ2

D

(within sires)
Within progenies 527 2.19 σ2

W

d = 2.33
k = 3.48
k′ = 4.16

Table 6: Quantitative genetic analysis of the inheritance of body weight in female mice (from
Falconer and Mackay, pp. 169–170.)

An example: body weight in female mice

The analysis involves 719 offspring from 74 sires and 192 dams, each with one litter. The
offspring were spread over 4 generations, and the analysis is performed as a nested ANOVA
with the genetic analysis nested within generations. An additional complication is that the
design was unbalanced, i.e., unequal numbers of progeny were measured in each sibship. As
a result the degrees of freedom don’t work out to be quite as simple as what I showed you.10

The results are summarized in Table 6.
Using the expressions for the composition of the mean square we obtain

σ2
W = MSW

= 2.19

σ2
D =

(
1

k

)
(MSD − σ2

W )

= 2.47

σ2
S =

(
1

dk′

)
(MSS − σ2

W − k′σ2
D)

= 0.48 .

Thus,

Vp = 5.14

Va = 1.92

10What did you expect from real data? This example is extracted from Falconer and Mackay, pp. 169–170.
See the book for details.
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Vd + Ve = 3.22

Vd = (0.00—1.64)

Ve = (1.58—3.22)

Why didn’t I give a definite number for Vd after my big spiel above about how we can
estimate it from a full-sib crossing design? Two reasons. First, if you plug the estimates for
σ2
D and σ2

S into the formula above for Vd you get Vd = 7.96, Ve = −4.74, which is clearly
impossible since Vd has to be less than Vp and Ve has to be greater than zero. It’s a variance.
Second, the experimental design confounds two sources of resemblance among full siblings:
(1) genetic covariance and (2) environmental covariance. The full-sib families were all raised
by the same mother in the same pen. Hence, we don’t know to what extent their resemblance
is due to a common natal environment.11 If we assume Vd = 0, we can estimate the amount
of variance accounted for by exposure to a common natal environment, VEc = 1.99, and by
environmental variation within sibships, VEw = 1.23.12 Similarly, if we assume VEw = 0,
then Vd = 1.64 and VEc = 1.58. In any case, we can estimate the narrow sense heritability
as

h2N =
(

1.92

5.14

)
= 0.37 .

Creative Commons License

These notes are licensed under the Creative Commons Attribution License. To view a copy
of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

11Notice that this doesn’t affect our analysis of half-sib families, i.e., the progeny of different sires, since
each father was bred with several females

12See Falconer for details.
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