
Evolution of quantitative traits

Introduction

Let’s stop and review quickly where we’ve come and where we’re going. We started our
survey of quantitative genetics by pointing out that our objective was to develop a way to
describe the patterns of phenotypic resemblance among relatives. The challenge was that we
wanted to do this for phenotypic traits that whose expression is influenced both by many
genes and by the environment in which those genes are expressed. Beyond the technical,
algebraic challenges associated with many genes, we have the problem that we can’t directly
associate particular genotypes with particular phenotypes. We have to rely on patterns of
phenotypic resemblance to tell us something about how genetic variation is transmitted.
Surprisingly, we’ve managed to do that. We now know that it’s possible to:

• Estimate the additive effect of an allele.1

• Partition the phenotypic variance into genotypic and environmental components and
to partition the genotypic variance into additive and dominance components.2

• Estimate all of the variance components from a combination of appropriate crossing
designs and appropriate statistical analyses.

Now we’re ready for the next step: applying all of these ideas to the evolution of a
quantitative trait.

1Actually, we don’t know this. You’ll have to take my word for it that in certain breeding designs its
possible to estimate not only the additive genetic variance and the dominance genetic variance, but also the
actual additive effect of “alleles” that we haven’t even identified. We’ll see a more direct approach soon,
when we get to genome-wide associations studies.

2I should point out that this is an oversimplification. I’ve mentioned that we typically assume that we can
simply add the effects of alleles across loci, but if you think about how genes actually work in organisms, you
realize that such additivity across loci isn’t likely to be very common. Strictly speaking there are epistatic
components to the genetic variance too, i.e., components of the genetic variance that have to do not with
the interaction among alleles at a single locus (the dominance variance that we’ve already encountered), but
with the interaction of alleles at different loci.
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Evolution of the mean phenotype

We’re going to focus on how the mean phenotype in a population changes in response to nat-
ural selection, specifically in response to viability selection. Before we can do this, however,
we need to think a bit more carefully about the relationship between genotype, phenotype,
and fitness. Let Fij(x) be the probability that genotype AiAj has a phenotype smaller than
x.3 Then xij, the genotypic value of AiAj is

xij =
∫ ∞
−∞

xdFij(x)

and the population mean phenotype is p2x11+2pqx12+q2x22.4 If an individual with phenotype
x has fitness w(x), then the fitness of an individual with genotype AiAj is

wij =
∫ ∞
−∞

w(x)dFij(x)

and the mean fitness in the population is w̄ = p2w11 + 2pqw12 + q2w22.
Now, there’s a well known theorem from calculus known as Taylor’s theorem. It says

that for any function5 f(x)

f(x) = f(a) +
∞∑
k=1

(
(x− a)k

k!

)
f (k)(a) .,

where f (k)(a) is the kth derivative of f(x) evaluated at a.6 Using this theorem we can
produce an approximate expression describing how the mean phenotype in a population
will change in response to selection. Remember that the mean phenotype, x̄, depends both
on the underlying genotypic values and on the allele frequency. So I’m going to write the
mean phenotype as x̄(p) to remind us of that dependency. The phenotype changes from one
generation to the next as a result of changes in the frequency of alleles that influence the

3For those of you who have had probability theory, Fij(x) is the cumulative distribution for the probability
density for phenotype associated with AiAj .

4I know that the integral looks horrible, but that horrible looking integral is just a mathematical way of
saying what I’ve repeated for the last several lectures: The genotypic value for a genotype is just the mean
phenotype associated with that genotype.

5Actually there are restrictions on the functions to which it applies, but we can ignore those restrictions
for our purposes.

6If that mumbo jumbo doesn’t mean anything to you, don’t worry about it. Just remember that what
we’re about to do relies on an approximation and that the approximation works best with the difference
between s and a is small.
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phenotype, assuming that the environmental effects on phenotypes don’t change.

x̄(p′) = x̄(p) + (p′ − p)
(
dx̄

dp

)
+ o(p2)

x̄(p) = p2x11 + 2pqx12 + q2x22

dx̄(p)

dp
= 2px11 + 2qx12 − 2px12 − 2qx22

= 2 {(px11 + qx12 − x̄/2)− (px12 + qx22 − x̄/2)}
= 2 (α1 − α2)

x̄(p′) ≈ x̄(p) + (p′ − p) (2(α1 − α2))

∆x̄ = (∆p) (2(α1 − α2))

In other words, the change in mean phenotype from one generation to the next depends first
on how much the frequency of the A1 allele changes and second on the difference between
the additive effect of A1 and A2.

Now you need to remember (from lo those many weeks ago) that

p′ =
p2w11 + pqw12

w̄
.

Thus,

∆p = p′ − p

=
p2w11 + pqw12

w̄
− p

=
p2w11 + pqw12 − pw̄

w̄

= p
(
pw11 + qw12 − w̄

w̄

)
.

Now,7 let’s do a linear regression of fitness on phenotype. After all, to make any further
progress, we need to relate phenotype to fitness, so that we can use the relationship between
phenotype and genotype to infer the change in allele frequencies, from which we will infer

7Since we’re having so much fun with mathematics why should we stop here?
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the change in mean phenotype.8 From our vast statistical knowledge, we know that the slope
of this regression line is

β1 =
Cov(w, x)

Var(x)

and its intercept is
β0 = w̄ − β1x̄ .

Let’s use this regression equation to determine the fitness of each genotype. This is only an
approximation to the true fitness,9 but it is adequate for many purposes.

wij =
∫ ∞
−∞

w(x)dFij(x)

≈
∫ ∞
−∞

(β0 + β1x)dFij(x)

= β0 + β1xij

w̄ = β0 + β1x̄ .

If we substitute this into our expression for ∆p above, we get

∆p = p
(
pw11 + qw12 − w̄

w̄

)
= p

(
p(β0 + β1x11) + q(β0 + β1x12)− (β0 + β1x̄)

w̄

)

= pβ1

(
px11 + qx12 − x̄

w̄

)
= pβ1

(
α1 − x̄/2

w̄

)

= pβ1

(
α1 − (pα1 + qα2)

w̄

)

=
pqβ1(α1 − α2)

w̄
.

So where are we now?10 Let’s substitute this result back into the equation for ∆x̄. When
we do we get

∆x̄ = (∆p) (2(α1 − α2))

8Whew! That was a mouthful.
9Specifically, we are implicitly assuming that the fitnesses are adequately approximated by a linear func-

tion of our phenotypic measure.
10You don’t have to tell me where you wish you were. I can reliably guess that it’s not here.
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=

(
pqβ1(α1 − α2)

w̄

)
(2(α1 − α2))

= 2pqα2

(
β1

w̄

)

= Va

(
β1

w̄

)
.

This is great if we’ve done the regression between fitness and phenotype, but what if we
haven’t?11 Let’s look at Cov(w, x) in a little more detail.

Cov(w, x) = p2
∫ ∞
−∞

xw(x)dF11(x) + 2pq
∫ ∞
−∞

xw(x)dF12(x)

+q2
∫ ∞
−∞

xw(x)dF22(x)− x̄w̄

= p2
(∫ ∞
−∞

xw(x)dF11(x)− x11w̄ + x11w̄
)

+2pq
(∫ ∞
−∞

xw(x)dF11(x)− x12w̄ + x12w̄
)

+q2
(∫ ∞
−∞

xw(x)dF22(x)− x22w̄ + x22w̄
)

−x̄w̄
= p2

(∫ ∞
−∞

xw(x)dF11(x)− x11w̄
)

+2pq
(∫ ∞
−∞

xw(x)dF11(x)− x12w̄
)

+q2
(∫ ∞
−∞

xw(x)dF22(x)− x22w̄
)

.

Now ∫ ∞
−∞

xw(x)dFij(x)− xijw̄ = w̄

(∫ ∞
−∞

xw(x)

w̄
dFij(x)− xij

)
= w̄(x∗ij − xij) ,

where x∗ij refers to the mean phenotype of AiAj after selection. So

Cov(w, x) = p2w̄(x∗11 − x11) + 2pqw̄(x∗12 − x12)q2w̄(x∗22 − x22)

= w̄(x̄∗ − x̄) ,

11Hang on just a little while longer. We’re almost there.
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Genotype A1A1 A1A2 A2A2

Phenotype 1.303 1.249 0.948

Table 1: A simple example to illustrate response to selection in a quantitative trait.

where x̄∗ is the population mean phenotype after selection. In short,12 combining our equa-
tions for the change in mean phenotype and for the covariance of fitness and phenotype and
remembering that β1 = Cov(w, x)/V ar(x)13

∆x̄ = Va

 w̄(x̄∗−x̄)
Vp

w̄


= h2

N(x̄∗ − x̄)

∆x̄ = x̄′ − x̄ is referred to as the response to selection and is often given the symbol R.
It is the change in population mean between the parental generation (before selection) and
the offspring beneration (before selection). x̄∗ − x̄ is referred to as the selection differential
and is often given the symbol S. It is the difference between the mean phenotype in the
parental generation before selection and the mean phenotype in the parental generation after
selection. Thus, we can rewrite our final equation as

R = h2
NS .

This equation is often referred to as the breeders equation.

A Numerical Example

To illustrate how this works, let’s examine the simple example in Table 1.
Given these phenotypes, p = 0.25, and Vp = 0.16, it follows that x̄ = 1.08 and h2

N =
0.1342. Suppose the mean phenotype after selection is 1.544. What will the phenotype be
among the newly born progeny?

S = x̄∗ − x̄
= 1.544− 1.08

= 0.464

12We finally made it.
13You also need to remember that Var(x) = Vp, since they’re the same thing, the phenotypic variance.
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Genotype A1A1 A1A2 A2A2

Frequency p2 2pq q2

Fitness w11 w12 w22

Additive fitness value 2α1 α1 + α2 2α2

Table 2: Fitnesses and additive fitness values used in deriving Fisher’s Fundamental Theorem
of Natural Selection.

∆x̄ = h2
NS

= (0.1342)(0.464)

= 0.06

x̄′ = x̄+ ∆x̄

= 1.08 + 0.06

= 1.14

Fisher’s Fundamental Theorem of Natural Selection

Suppose the phenotype whose evolution we’re interested in following is fitness itself.14 Then
we can summarize the fitnesses as illustrated in Table 2.

Although I didn’t tell you this, a well-known fact about viability selection at one locus
is that the change in allele frequency from one generation to the next can be written as

∆p =
(
pq

2w̄

)(
dw̄

dp

)
.

Using our new friend, Taylor’s theorem, it follows immediately that

w̄′ = w̄ + (∆p)

(
dw̄

dp

)
+

(
(∆p)2

2

)(
d2w̄

dp2

)
.

Or, equivalently

∆w̄ = (∆p)

(
dw̄

dp

)
+

(
(∆p)2

2

)(
d2w̄

dp2

)
.

14The proof of the fundamental theorem that follows is due to C. C. Li [?]
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Recalling that w̄ = p2w11 + 2p(1− p)w12 + (1− p)2w22 we find that

dw̄

dp
= 2pw11 + 2(1− p)w12 − 2pw12 − 2(1− p)w22

= 2[(pw11 + qw12)− (pw12 + qw22)]

= 2[(pw11 + qw12 − w̄/2)− (pw12 + qw22 − w̄/2)]

= 2[α1 − α2]

= 2α ,

where the last two steps use the definitions for α1 and α2, and we set α = α1−α2. Similarly,

d2w̄

dp2
= 2w11 − 2w12 − 2w12 + 2w22

= 2(w11 − 2w12 + w22)

Now we can plug these back into the equation for ∆w̄:

∆w̄ =

{(
pq

2w̄

)(
dw̄

dp

)}(
dw̄

dp

)
+

{(
pq
2w̄

) (
dw̄
dp

)}2

2
[2(w11 − 2w12 + w22)]

=
{(

pq

2w̄

)
(2α)

}
(2α) +

{(
pq

2w̄

)
(2α)

}2

(w11 − 2w12 + w22)

=
2pqα2

w̄
+
p2q2α2

w̄2
(w11 − 2w12 + w22)

=
Va
w̄

{
1 +

pq

2w̄
(w11 − 2w12 + w22)

}
,

where the last step follows from the observation that Va = 2pqα2. The quantity pq
2w̄

(w11 −
2w12 + w22) is usually quite small, especially if selection is not too intense.15 So we are left
with

∆w̄ ≈ Va
w̄

.

Selection on multiple traits

So far we’ve studied only the evolution of a single trait, e.g., height or weight. But organ-
isms have many traits, and they evolve at the same time. How can we understand their

15Notice that it’s exactly equal to 0 if the fitness of the heterozygote is exactly intermediate. In that case,
all of the variance in fitness is additive.
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simultaneous evolution? The basic framework of the quantitative genetic approach was first
outlined by Russ Lande and Steve Arnold [?].

Let z1, z2, . . . , zn be the phenotype of each character that we are studying. We’ll use
z̄ to denote the vector of these characters before selection and z̄∗ to denote the vector after
selection. The selection differential, s, is also a vector given by

s = z̄∗ − z̄ .

Suppose p(z) is the probability that any individual has phenotype z, and let W (z) be the
fitness (absolute viability) of an individual with phenotype z. Then the mean absolute
fitness is

W̄ =
∫
W (z)p(z)dz .

The relative fitness of an individual with phenotype z can be written as

w(z) =
W (z)

W̄
.

Using relative fitnesses the mean relative fitness, w̄, is 1. Now

z̄∗ =
∫
zw(z)p(z)dz .

Recall that Cov(X, Y ) = E(X − µx)(Y − µy) = E(XY )− µxµy. Consider

s = z̄∗ − z̄

=
∫
zw(z)p(z)dz− z̄

= E(w, z)− w̄z̄ ,

where the last step follows since w̄ = 1 meaning that w̄z̄ = z̄. In short,

s = Cov(w, z) .

That should look familiar from our analysis of the evolution of a single phenotype.
If we assume that all genetic effects are additive, then the phenotype of an individual

can be written as
z = x + e ,

where x is the additive genotype and e is the environmental effect. We’ll denote by G the
matrix of genetic variances and covariances and by E the matrix of environmental variances
and covariances. The matrix of phenotype variances and covariances, P, is then given by16

P = G + E .

16Assuming that there are no genotype × environment interactions.
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Now, if we’re willing to assume that the regression of additive genetic effects on phenotype
is linear17 and that the environmental variance is the same for every genotype, then we can
predict how phenotypes will change from one generation to the next

x̄∗ − x̄ = GP−1(z̄∗ − z̄)

z̄′ − z̄ = GP−1(z̄∗ − z̄)

∆z̄ = GP−1s

GP−1 is the multivariate version of h2
N . This equation is also the multivariate version of the

breeders equation.
But we have already seen that s = Cov(w, z). Thus,

β = P−1s

is a set of partial regression coefficients of relative fitness on the characters, i.e., the depen-
dence of relative fitness on that character alone holding all others constant.

Note:

si =
n∑

j=1

βjPij

= β1Pi1 + · · ·+ βiPii + · · ·+ βnPin

is the total selective differential in character i, including the indirect effects of selection on
other characters.

An example: selection in a pentastomid bug

94 individuals were collected along shoreline of Lake Michigan in Parker County, Indiana
after a storm. 39 were alive, 55 dead. The means of several characters before selection, the
trait correlations, and the selection analysis are presented in Table 3.

The column labeled s is the selective differential for each character. The column labeled
s′ is the standardized selective differential, i.e., the change measured in units of standard
deviation rather than on the original scale.18 A multiple regression analysis of fitness versus
phenotype on the original scale gives estimates of β, the direct effect of selection on that

17And we were willing to do this when we were studying the evolution of only one trait, so why not do it
now?

18To measure on this scale the data is simply transformed by setting yi = (xi − x̄)/s, where xi is the raw
score for the ith individual, x̄ is the sample mean for the trait, and s is its standard deviation.
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Character Mean before selection standard deviation
head 0.880 0.034
thorax 2.038 0.049
scutellum 1.526 0.057
wing 2.337 0.043

head thorax scutellum wing
head 1.00 0.72 0.50 0.60
thorax 1.00 0.59 0.71
scutellum 1.00 0.62
wing 1.00

Character s s′ β β′

head -0.004 -0.11 -0.7 ± 4.9 -0.03 ± 0.17
thorax -0.003 -0.06 11.6 ± 3.9∗∗ 0.58 ± 0.19∗∗

scutellum -0.16∗ -0.28∗ -2.8 ± 2.7 -0.17 ± 0.15
wing -0.019∗∗ -0.43∗∗ -16.6 ± 4.0∗∗ -0.74 ± 0.18∗∗

Table 3: Selection analysis of pentastomid bugs on the shores of Lake Michigan.

trait. A multiple regression analysis of fitness versus phenotype on the transformed scale
gives the standardized direct effect of selection, β′, on that trait.

Notice that the selective differential19 for the thorax measurement is negative, i.e., in-
dividuals that survived had smaller thoraces than those that died. But the direct effect of
selection on thorax is strongly positive, i.e., all other things being equal, an individual with a
large was more likely to survive than one with a small thorax. Why the apparent contradic-
tion? Because the thorax measurement is positively correlated with the wing measurement,
and there’s strong selection for decreased values of the wing measurement.

Cumulative selection gradients

Arnold [?] suggested an extension of this approach to longer evolutionary time scales. Specif-
ically, he studied variation in the number of body vertebrae and the number of tail vertebrae
in populations of Thamnophis elegans from two regions of central California. He found rel-
atively little vertebral variation within populations, but there were considerable differences

19The cumulative effect of selection on the change in mean phenotype.
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body tail
body 35.4606 11.3530
tail 11.3530 37.2973

Table 4: Genetic variance-covariance matrix for vertebral number in central Californian
garter snakes.

in vertebral number between populations on the coast side of the Coast Ranges and popu-
lations on the Central Valley side of the Coast Ranges. The consistent difference suggested
that selection might have produced these differences, and Arnold attempted to determine
the amount of selection necessary to produce these differences.

The data

Arnold collected pregnant females from two local populations in each of two sites in northern
California 282 km apart from one another. Females were collected over a ten-year period
and returned to the University of Chicago. Dam-offspring regressions were used to estimate
additive genetic variances and covariances of vertebral number.20 Mark-release-recapture
experiments in the California populations showed that females with intermediate numbers
of vertebrae grow at the fastest rate, at least at the inland site, although no such relationship
was found in males. The genetic variance-covariance matrix he obtained is shown in Table 4.

The method

We know from Lande and Arnold’s results that the change in multivariate phenotype from
one generation to the next, ∆z̄, can be written as

∆z̄ = Gβ ,

where G is the genotypic variance-covariance matrix, β = P−1s is the set of partial regression
coefficients describing the direct effect of each character on relative fitness.21 If we are willing
to assume that G remains constant, then the total change in a character subject to selection
for n generations is

n∑
k=1

∆z̄ = G
n∑

k=1

β .

201000 progeny from 100 dams.
21P is the phenotypic variance-covariance matrix and s is the vector of selection differentials.
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Thus,
∑n

k=1 β can be regarded as the cumulative selection differential associated with a
particular observed change, and it can be estimated as

n∑
k=1

β = G−1
n∑

k=1

∆z̄ .

The results

The overall difference in vertebral number between inland and coastal populations can be
summarized as:

bodyinland − bodycoastal = 16.21

tailinland − tailcoastal = 9.69

Given the estimate of G already obtained, this corresponds to a cumulative selection gradient
between inland and coastal populations of

βbody = 0.414

βtail = 0.134

Applying the same technique to looking at the differences between populations within
the inland site and within the coastal site we find cumulative selection gradients of

βbody = 0.035

βtail = 0.038

for the coastal site and

βbody = 0.035

βtail = −0.004

for the inland site.

The conclusions

“To account for divergence between inland and coastal California, we must invoke cumulative
forces of selection that are 7 to 11 times stronger than the forces needed to account for
differentiation of local populations.”
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Furthermore, recall that the selection gradients can be used to partition the overall
response to selection in a character into the portion due to the direct effects of that character
alone and the portion due to the indirect effects of selection on a correlated character. In
this case the overall response to selection in number of body vertebrae is given by

G11β1 + G12β2 ,

where G11β1 is the direct effect of body vertebral number and G12β2 is the indirect effect of
tail vertebral number. Similarly, the overall response to selection in number of tail vertebrae
is given by

G12β1 + G22β2 ,

where G22β2 is the direct effect of tail vertebral number and G12β1 is the indirect effect of
body vertebral number. Using these equations it is straightforward to calculate that 91%
of the total divergence in number of body vertebrae is a result of direct selection on this
character. In contrast, only 51% of the total divergence in number of tail vertebrae is a result
of direct selection on this character, i.e., 49% of the difference in number of tail vertebrae is
attributable to indirect selection as a result of its correlation with number of body vertebrae.

The caveats

While the approach Arnold suggests is intriguing, there are a number of caveats that must
be kept in mind in trying to apply it.

• This approach assumes that the G matrix remains constant.

• This approach cannot distinguish strong selection that happened over a short period
of time from weak selection that happened over a long period of time.

• This approach assumes that the observed differences in populations are the result of
selection, but populations isolated from one another will diverge from one another even
in the absence of selection simply as a result of genetic drift.

– Small amount of differentiation between populations within sites could reflect
relatively recent divergence of those populations from a common ancestral popu-
lation.

– Large amount of differentiation between populations from inland versus coastal
sites could reflect a more ancient divergence from a common ancestral population.
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