
Population genomics

Introduction

In the past 15 years, the development of high-throughput methods for genomic sequencing
have revolutionized how geneticists collect data. It is now possible to produce so much data so
rapidly that simply storing and processing the data poses great challenges [12]. Nekrutenko
and Taylor [12] don’t even discuss the new challenges that face population geneticists and
evolutionary biologists as they start to take advantage of those tools, nor did it discuss
the promise these data hold for providing new insight into long-standing questions, but the
challenges and the promise are at least as great as those they do describe.

To some extent the most important opportunity provided by high-throughput sequencing
is simply that we now have a lot more data to answer the same questions. For example,
using a technique like RAD sequencing [1] or genotyping-by-sequencing (GBS: [2]), it is now
possible to identify thousands of polymorphic SNP markers in non-model organisms, even
if you don’t have a reference genome available. And as the cost of sequencing continues to
decline, low-coverage whole genome sequencing is becoming more widely used and providing
even more detailed genomic data in those organisms with a reference genome available [10].
As we’ve seen several times this semester, the variance associated with drift is enormous.
Many SNPs identified through RAD-Seq or GBS are likely to be independently inherited.
Thus, the amount and pattern of variation at each locus will represent an independent sample
from the underlying evolutionary process. As a result, we should be able to get much better
estimates of fundamental parameters like θ = 4Neµ, M = 4Nem, and R = 4Ner and to have
much greater power to discriminate among different evolutionary scenarios. By averaging
estimates across thosands of loci our estimates of θ = 4Neµ and M = 4Nem, for example,
are likely to be much more precise, and because we have a (mostly) neutral background from
which to make those estimates, we may be able to identify genetic markers with “unusual”
patterns reflecting a unique history of selection. Willing et al. [13], for example, present
simulations suggesting that accurate estimates of FST are possible with sample sizes as small
as 4–6 individuals per population, so long as the number of markers used for inference is
greater than 1000.
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A quick overview of high-throughput sequencing meth-

ods

I won’t review the chemistry used for high-throughput sequencing. It changes very rapidly,
and I can’t keep up with it. Suffice it to say that 454 Life Sciences, Illumina, PacBio, and
other companies I don’t know about each have different approaches to very high throughput
DNA sequencing. In particular there aare several reduced representation sequencing methods
that are widely used in organisms without reference genomes. What they all have in common
is that the whole genome is broken into small fragments, sequenced, and SNPs are called
without aligning the reads to a reference. Whether using a reduced representation method
or low-coverage whole genome sequencing, a tremendous amount of data is availalbe, up
to 380Gb and up to 1.2 billion reads from a single run on an Illumina NextSeq 2000 for
example (https://www.illumina.com/systems/sequencing-platforms.html ; accessedd
5 Novembber 2023).

RAD sequencing

Baird et al. [1] introduced RAD about 15 years ago. One of its great attractions for evolu-
tionary geneticists is that RAD-seq can be used in any organism from which you can extract
DNA and the laboratory manipulations are relatively straightforward.

• Digest genomic DNA from each individual with a restriction enzyme, and ligate an
adapter to the resulting fragments. The adapter includes a forward amplification
primer, a sequencing primer and a “barcode” used to identify the individual from
which the DNA was extracted.

• Pool the individually barcoded samples (“normalizing” the mixture so that roughly
equal amounts of DNA from each individual are present) shear them and select those
of a size appropriate for the sequencing platform you are using.

• Ligate a second adapter to the sample, where the second adapter is the reverse com-
plement of the reverse amplification primer.

• PCR amplification will enrich only DNA fragments having both the forward and reverse
amplification primer.

The resulting library consists of sequences within a relatively small distance from restriction
sites.
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Genotyping-by-sequencing

Genotyping-by-sequencing (GBS) is a similar approach.

• Digest genomic DNA with a restriction enzyme and ligate two adapters to the genomic
fragments. One adapter contains a barcode and the other does not.

• Pool the samples.

• PCR amplify and sequence. Not all ligated fragments will be sequenced because some
will contain only one adapter and some fragments will be too long for the NGS platform.

Once an investigator has her sequenced fragments back, she can either map the fragments
back to a reference genome or she can assemble the fragments into orthologous sequences de
novo. I’m not going to discuss either of those processes, but you can imagine that there’s a
lot of bioinformatic processing going on. What I want to focus on is what you do with the
data and how you interpret it.

High-resollutions phylogeography

The American pitcher plant mosquito Wyeomyia smithii has been extensively studied for
many years. It’s a model organism for ecology, but its genome has not been sequenced. An
analysis of COI from 20 populations and two outgroups produced the set of relationships
you see in Figure 1 [3]. As you can see, this analysis allows us to distinguish a northern
group of populations from a southern group of populations, but it doesn’t provide us any
reliable insight into finer scale relationships.

Using the same set of samples, the authors used RAD sequencing to identify 3741 SNPs.
That’s more than 20 times the number of variable sites found in COI.1 Not surprisingly, the
large number of additional sites allowed the authors to produce a much more highly resolved
phylogeny (Figure 2). With this phylogeny it’s easy to see that southern populations are
divided into two distinct groups, those from North Carolina and those from the Gulf Coast.
Similarly, the northern group of populations is subdivided into those from the Appalachians
in North Carolina, those from the mid-Atlantic coast, and those from further north. The
glacial history of North America means that both the mid-Atlantic populations and the
populations farther north must have been derived from one or more southern populations
after the height of the last glaciation. Given the phylogenetic relationships recovered here, it
seems clear that they are most closely related to populations in the Appalachians of North
Carolina.

1And a pretty small number of SNPs relative to the number commonly identified in studies these days.
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Figure 1: Maximum-likelihood phylogenetic tree depicting relationships among populations
of W. smithii relative to the outgroups W. vanduzeei and W. mitchelli (from [3]).4



Figure 2: A. Geographical distribution of samples included in the analysis. B. Phylogenetic
relationship of samples included in the analysis.
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That’s the promise of high-throughput sequencing for population genetics. What are the
challenges? Funny you should ask.

Estimates of nucleotide diversity2

Beyond the simple challenge of dealing with all of the short DNA fragments that emerge
from high-throughput sequencing, there are at least two challenges that don’t arise with data
obtained in more traditional ways.

1. Most studies involve “shotgun” sequencing of entire genomes. In large diploid genomes,
this leads to variable coverage. At sites where coverage is low, there’s a good chance
that all of the reads will be derived from only one of the two chromosomes present, and
a heterozygous individual will be scored as homozygous. “Well,” you might say, “let’s
just throw away all of the sites that don’t have at least 8× coverage.”3 That would
work, but you would also be throwing out a lot of potentially valuable information.4

It seems better to develop an approach that lets us use all of the data we collect.

2. Sequencing errors are more common with high-throughput methods than with tradi-
tional methods, and since so much data is produced, it’s not feasible to go back and
resequence apparent polymorphisms to see if they reflect sequencing error rather than
real differences. Quality scores can be used, but they only reflect the quality of the
reads from the sequencing reaction, not errors that might be introduced during sample
preparation. Again, we might focus on high-coverage sites and ignore “polymorphisms”
associated with single reads, but we’d be throwing away a lot of information.

A better approach than setting arbitrary thresholds and throwing away data is to develop an
explicit model of how errors can arise during sequencing and to use that model to interpret
the data we’ve collected. That’s precisely the approach that Lynch [11] adopts. Here’s how
it works assuming that we have a sample from a single, diploid individual:

• Any particular site will have a sequence profile, (n1, n2, n3, n4), corresponding to the
number of times an A, C, G, or T was observed. n = n1 + n2 + n3 + n4 is the depth of
coverage for that site.

2This section draws heavily on [11]
3If both chromosomes have an equal probability of being sequenced, the probability that one of them is

missed with 8× coverage is (1/2)8 = 1/256.
4It’s valuable information, providing you know how to deal with in properly.
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• Let ε be the probability of a sequencing error at any site, and assume that all errors
are equiprobable, e.g., there’s no tendency for an A to be miscalled as a C rather than
a T when it’s miscalled.5

• If the site in question were homozygous A, the probability of getting our observed
sequence profile is:

P (n1, n2, n3, n4|homozygous A, ε) =

(
n

n1

)
(1− ε)n1εn−n1 .

A similar relationship holds if the site were homozygous C, G, or T. Thus, we can
calculate the probability of our data if it were homozygous as6

P (n1, n2, n3, n4|homozygous, ε) =
4∑

i=1

(
p2i∑4
j=1 p

2
j

)(
n

ni

)
(1− ε)niεn−ni ,

where (p1, . . . , p4) is the frequency of A, C, G, or T.

• If the site in question were heterozygous, the probability of getting our observed se-
quence profile is quite a bit more complicated. Let k1 be the number of reads from
the first chromosome and k2 be the number of reads from the second chromosome
(n = k1 + k2). Then

P (k1, k2) =

(
n

k1

)(
1

2

)k1 (1

2

)k2

=

(
n

k1

)(
1

2

)n

.

Now consider the ordered genotype xixj, where xi refers to the nucleotide on the first
chromosome and xj refers to the nucleotide on the second chromosome. The probability
of getting our observed sequence profile from this genotype given that we have k1 reads
from the first chromosome and k2 reads from the second is:

P (n1, n2, n3, n4|xi, xj , k1, k2) =

4∑
l=1

k1∑
m=0

(
k1
m

)
(1− δil)mδk1−m

il

(
k2

ni −m

)
(1− δjl)n1−mδ

k2−(n1−m)
jl ,

5It wouldn’t be hard, conceptually, to allow different nucleotides to have different error rates, e.g., εA, εC ,
εG, εT , but the notation would get really complicated, so we won’t bother trying to show how differential
error rates can be accommodated.

6This expression looks a little different from the one in [11], but I’m pretty sure it’s equivalent.
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where

δil =

{
1− ε if i = l
ε if i 6= l .

We can use Bayes’ Theorem7 to get

P (n1, n2, n3, n4|xi, xj, ε) = P (n1, n2, n3, n4|xi, xj, k1, k2, ε)P (k1, k2) ,

and with that in hand we can get

P (n1, n2, n3, n4|heterozygous, ε) =
4∑

i=1

∑
j 6=i

(
xixj

1−∑4
l=1 p

2
l

)
P (n1, n2, n3, n4|xi, xj, ε)

• Let π be the probability that any site is heterozygous. Then the probability of getting
our data is:

P (n1, n2, n3, n4|π, ε) = πP (n1, n2, n3, n4|heterozygous, ε) + (1− π)P (n1, n2, n3, n4|homozygous, ε) .

• What we’ve just calculated is the probability of the configuration we observed at a
particular site. The probability of our data is just the product of this probability
across all of the sites in our sample:

P (data|π, ε) =
S∏

s=1

P (n
(s)
1 , n

(s)
2 , n

(s)
3 , n

(s)
4 |π, ε) ,

where the superscript (s) is used to index each site in the data.

• What we now have is the likelihood of the data in terms of ε, which isn’t very inter-
esting since it’s just the average sequencing error rate in our sample, and π, which
is interesting, because it’s the genome-wide nucleotide diversity. Now we “simply”
maximize that likelihood, and we have maximum-likelihood estimates of both parame-
ters. Alternatively, we could supply priors for ε and π and use MCMC to get Bayesian
estimates of ε and π.

Notice that this genome-wide estimate of nucleotide diversity is obtained from a sample
derived from a single diploid individual. Lynch [11] develops similar methods for estimating
gametic disequilibrium as a function of genetic distance for a sample from a single diploid

7Ask me for details if you’re interested.
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Taxon 4Neµ 4Neµ (low coverage) ε
Cionia intestinalis 0.0111 0.012 0.00113
Daphnia pulex 0.0011 0.0012 0.00121

Table 1: Estimates of nucleotide diversity and sequencing error rate in Cionia intestinalis
and Daphnia pulex (results from [6]).

individual. He also extends that method to samples from a pair of individuals, and he
describes how to estimate mutation rates by comparing sequences derived from individuals
in mutation accumulation lines with consensus sequences.8

Haubold et al. [6] describe a program implementing these methods. Recall that under
the infinite sites model of mutation π = 4Neµ. They analyzed data sets from the sea squirt
Ciona intestinalis and the water flea Daphnia pulex (Table 1). Notice that the sequencing
error rate in D. pulex is indistinguishable from the nucleotide diversity.

AMOVA from high-throughput sequencing9

What we’ve discussed so far gets us estimates of some population parameters (4Neµ, 4Ner),
but they’re derived from the sequences in a single diploid individual. That’s not much of a
population sample, and it certainly doesn’t tell us anything about how different populations
are from one another. Gompert and Buerkle [5] describe an approach to estimate statistics
very similar to ΦST from AMOVA. Since they take a Bayesian approach to developing their
estimates, they refer to approach as BAMOVA, Bayesian models for analysis of molecular
variance. They propose several related models.

• Individual model: This model assumes that sequencing errors are negligible.10 Under
this model, the only trick is that we may or may not pick up both sequences from a
heterozygote. The probability of not seeing both sequences in a heterozygote is related
to the depth of coverage.

8Mutation accumulation lines are lines propagated through several (sometimes up to hundreds) of genera-
tions in which population sizes are repeatedly reduced to one or a few individuals, allowing drift to dominate
the dynamics and alleles to “accumulate” with little regard to their fitness effects.

9This section depends heavily on [5]
10Or that they’ve already been corrected. We don’t care how they might have been corrected. We care

only that we can assume that the reads we get from a sequencing run faithfully reflect the sequences present
on each of the chromosomes.
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• Population model: In some NGS experiments, investigators pool all of the samples
from a population into a single sample. Again, Gompert and Buerkle assume that
sequencing errors are negligible. Here we assume that the number of reads for one
of two alleles at a particular SNP site in a sample is related to the underlying allele
frequency at that site. Roughly speaking, the likelihood of the data at that site is then

P (xi|pi, ni, ki) =

(
ni

ki

)
pkii (1− pi)n−ki ,

where pi is the allele frequency at this site, ni is the sample size, and ki is the count of
one of the alleles in the sample. The likelihood of the data is just the product across
the site-specific likelihoods.11

Then, we put a prior on the pi and the parameters of this prior are defined in terms of
ΦST (among other things).12 They also propose a method for detecting SNP loci13 that have
unusually large or small values of ΦST .

BAMOVA example

Gompert and Buerkle [5] used data derived from two different human population data sets:

• 316 fully sequenced genes in an African population and a population with European
ancestry. With these data, they didn’t have to worry about the sequencing errors that
their model neglects and they could simulate pooled samples allowing them to compare
estimates derived from pooled versus individual-level data.

• 12,649 haplotype regions and 11,866 genes derived from 597 individuals across 33 widely
distributed human populations.

In analysis of the first data set, they estimated ΦST = 0.08. Three loci were identified as
having unusually high values of ΦST .

• HSD11B2: ΦST = 0.32(0.16, 0.48). Variants at this locus are associated with an
inherited form of high blood pressure and renal disease. A microsatellite in an intron
of this locus is weakly associated with type 1 diabetes.

11The actual model they use is a bit more complicated than this, but the principles are the same.
12Again, the actual model is a bit more complicated than what I’m describing here, but the principle is

the same.
13Or sets of SNP loci that are parts of a single contig.
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• FOXA2: ΦST = 0.32(0.12, 0.51). This gene is involved in regulation of insulin sensi-
tivity.

• POLG2: ΦST = 0.33(0.18, 0.48). This locus was identified as a target of selection in
another study.

In analysis of the 33-population data set, they found similar values of ΦST on each
chromosome, ranging from 0.083 (0.075, 0.091) on chromosome 22 to 0.11 (0.10, 0.12) on
chromosome 16. ΦST for the X chromosome was marginally higher: 0.14 (0.13,0.15). They
detected 569 outlier loci, 518 were high outliers and 51 were low outliers. Several of the loci
they detected as outliers had been previously identified as targets of selection. The loci they
identified as candidates for balancing selection have not been suggested before as targets of
such selection.

Estimating population structure

In addition to FST we saw that a principal components analysis of genetic data might some-
times be useful. Fumagalli et al. [4] develop a method for PCA that, like Lynch’s [11]
method for estimating nucleotide diversity, uses all of the information available in high-
throughput sequencing data rather than imposing an artificial threshold for calling geno-
types. They calculate the pairwise entries of the covariance matrix by integrating across the
genotype probability at each site as part of the calculation and weighting the contribution
of each site to the analysis by the probability that it is variable.14 As shown in Figure 3
this approach to PCA recovers the structure much better than approaches that simply call
genotypes at each locus, whether or not outliers are excluded. The authors also describe
approaches to estimating FST that take account of the characteristics of high-throughput se-
quencing data. Their software (ANGSD: http://www.popgen.dk/angsd/index.php/ANGSD)
implements these and other useful statistical analysis tools for next-generation sequencing
data, including Tajima’s D. They also provide NgsAdmix for Structure-like analyses of NGS
data (http://www.popgen.dk/software/index.php/NgsAdmix).

Genetic structure of human populations in Great

Britain

As we’ve seen several times in this course, the amount of genetic data available on humans is
vastly greater than what is available for any other organism. As a result, it’s possible to use

14See [4] for details.
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Figure 3: The “true genotypes” PCA is based on the actual, simulated genotypes (20 indi-
viduals in each population, 10,000 sites in the sample with 10% variable; FST between the
purple population and either the red or the green population was 0.4 and between the green
and red populations was 0.15; and coverage was simulated at 2× (from [4]).

12



these data to gain unusually deep insight into the recent history of many human populations.
Today’s example comes from Great Britain, courtesy of a very large consortium [9]

Data

• 2039 individuals with four grandparents born within 80km of one another, effectively
studying alleles sampled from grandparents (ca. 1885).

• 6209 samples from 10 countries in continental Europe.

• Autosomal SNPs genotyped in both samples (ca. 500K).

Results

Very little evidence of population structure within British sample

• Average pairwise FST : 0.0007

• Maximum pairwise FST : 0.003

Individual assignment analysis of genotypes used fineSTRUCTURE, which uses the same
principle as STRUCTURE but models the correlations among SNPs resulting from gametic dise-
quilibrium, rather than treating each locus as being independently inherited. The analysis is
on haplotypes rather than on alleles. In addition, it clusters populations hierarchically (Fig-
ure 4)

Analysis of the European data identifies 52 groups. The authors used Chromopainter

to construct each of the haplotypes detected in their sample of 2039 individuals from the
UK as a mosaic of haplotypes derived from those found in their sample of 6209 individuals
from continental Europe. Since they know (a) the UK cluster to which each UK individual
belongs and (b) the European group from which each individual contributing to the UK
mosaic belongs they can estimate (c) the proportion of ancestry for each UK cluster derived
from each European group. The results are shown in Figure 5.
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