
Analysis of molecular variance (AMOVA)

Introduction

We’ve already encountered π, the nucleotide diversity in a population, namely

π =
∑
ij

xixjδij ,

where xi is the frequency of the ith haplotype and δij is the fraction of nucleotides at which
haplotypes i and j differ.1 It shouldn’t come to any surprise to you that just as there is
interest in partitioning diversity within and among populations when we’re dealing with
simple allelic variation, i.e., Wright’s F -statistics, there is interest in partitioning diversity
within and among populations when we’re dealing with nucleotide sequence or other molec-
ular data. The approach I’m going to describe is known as Analysis of Molecular VAriance
(AMOVA) [1]. We’ll see later that AMOVA can be used very generally to partition variation
when there is a distance we can use to describe how different alleles are from one another,
but for now, let’s stick with nucleotide sequence data and think of δij simply as the fraction
of nucleotide sites at which two sequences differ.

Analysis of molecular variance (AMOVA)

The notation now becomes just a little bit more complicated. We will now use xik to refer
to the frequency of the ith haplotype in the kth population. Then

xi· =
1

K

K∑
k=1

xik

1When I introduced nucleotide diversity before, I defined δij as the number of nucleotides that differ
between haplotypes i and j. It’s a little easier for what follows if we think of it as the fraction of nucleotides
at which they differ instead. It’s really easy to convert between them. If δ∗ij is the number of nucleotides
that differ between haplotypes i and j, and N is the length of the haplotypes, then δij = δ∗ij/N . Of course, if
we wanted to get fancy, we could use a Bayesian approach to estimate δij , but we’ll avoid that complication
in what follows. Ask me about it if you’re interested.
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is the mean frequency of haplotype i across all populations, where K is the number of
populations. We can now define

πt =
∑
ij

xi·xj·δij

πs =
1

K

K∑
k=1

∑
ij

xikxjkδij ,

where πt is the nucleotide sequence diversity across the entire set of populations and πs is
the average nucleotide sequence diversity within populations. Then we can define

Φst =
πt − πs
πt

, (1)

which is the direct analog of Wright’s Fst for nucleotide sequence diversity. Why? Well, that
requires you to remember stuff we covered about two months ago.

To be a bit more specific, refer back to the notes on FST .2. When you do, you’ll see that
we defined

FIT = 1 − Hi

Ht

,

where Hi is the average heterozygosity in individuals and Ht is the expected panmictic
heterozygosity. Defining Hs as the average panmictic heterozygosity within populations, we
then observed that

1 − FIT =
Hi

Ht

=
Hi

Hs

Hs

Ht

= (1 − FIS)(1 − FST ) .

We can rearrange that equation a bit to solve for FST in terms of FIT and FIS.

1 − FST =
1 − FIT

1 − FIS

FST =
(1 − FIS) − (1 − FIT )

1 − FIS

2You can find the online version at http://darwin.eeb.uconn.edu/eeb348-notes/

genetic-structure.pdf if you don’t have them handy.
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=
(Hi/Hs) − (Hi/Ht)

Hi/Hs

=
(1/Hs) − (1/Ht)

1/Hs

= 1 − 1/Ht

1/HS

= 1 − Hs

Ht

.

In short, another way to think about FST is

FST =
Ht −Hs

Ht

. (2)

Now if you compare equation (1) and equation (2), you’ll see the analogy.
So far I’ve motivated this approach by thinking about δij as the fraction of sites at which

two haplotypes differ and πs and πt as estimates of nucleotide diversity. But nothing in the
algebra leading to equation (1) requires that assumption. Excoffier et al. [1] pointed out
that other types of molecular data can easily be fit into this framework. We simply need
an appropriate measure of the “distance” between different haplotypes or alleles. Even with
nucleotide sequences the appropriate δij may reflect something about the mutational pathway
likely to connect sequences rather than the raw number of differences between them. For
example, the distance might be a Jukes-Cantor distance or a more general distance measure
that accounts for more of the properties we know are associated with nucleotide substitution.
The idea is illustrated in Figure 1.

Notice that when we’re partitioning diversity with AMOVA, we’re using the word “diver-
sity” in a different sense than we did with F -statistics. With F -statistics we were thinking
about diversity solely in terms of allele frequency differences. With AMOVA we’re thinking
about diversity in terms of a combination of haplotype frequency differences and a measure
of how different — how distant — those haplotypes are from one another.

Once we have δij for all pairs of haplotypes or alleles in our sample, we can use the ideas
lying behind equation (1) to partition diversity — the average distance between randomly
chosen haplotypes or alleles — into within and among population components.3 This proce-
dure for partitioning diversity in molecular markers is referred to as an analysis of molecular

3As with F -statistics, the actual estimation procedure is more complicated than I describe here. Standard
approaches to AMOVA use method of moments calculations analogous to those introduced by Weir and Cock-
erham for F -statistics [5]. Bayesian approaches are possible, but they are not yet widely available (meaning,
in part, that I know how to do it, but I haven’t written the necessary software yet). Gompert et al. [2]
describe one approach for Bayesian AMOVA from pooled DNA sequences obtained from high-throughput
sequencing.
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Figure 1: Converting raw differences in sequence (or presence and absence of restriction
sites) into a minimum spanning tree and a mutational measure of distance for an analysis of
molecular variance (from [1]).

variance or AMOVA (by analogy with the ubiquitous statistical procedure analysis of vari-
ance, ANOVA). Like Wright’s F -statistics, the analysis can include several levels in the
hierarchy.

An AMOVA example

Excoffier et al. [1] illustrate the approach by presenting an analysis of restriction haplotypes
in human mtDNA. They analyze a sample of 672 mitochondrial genomes representing two
populations in each of five regional groups (Figure 2). They identified 56 haplotypes in that
sample. A minimum spanning tree illustrating the relationships and the relative frequency
of each haplotype is presented in Figure 3.

It’s apparent from Figure 3 that haplotype 1 is very common. In fact, it is present in
substantial frequency in every sampled population. An AMOVA using the minimum span-
ning network in Figure 3 to measure distance produces the results shown in Table 1. Notice
that there is relatively little differentiation among populations within the same geograph-
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Figure 2: Locations of human mtDNA samples used in the example analysis (from [1]).

Figure 3: Minimum spanning network of human mtDNA samples in the example. The size
of each circle is proportional to its frequency (from [1]).
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Component of differentiation Φ-statistics
Among regions ΦCT = 0.220
Among populations within regions ΦSC = 0.044
Among all populations ΦST = 0.246

Table 1: AMOVA results for the human mtDNA sample (from [1]).

ical region (ΦSC = 0.044). There is, however, substantial differentiation among regions
(ΦCT = 0.220). In fact, differences among populations in different regions is responsible for
nearly all of the differences among populations (ΦST = 0.246).

Remembering that AMOVA partitions a combination of haplotype frequency differences
and haplotype differences, the interpretation of the Φ-statistics is a little different from
the interpretation of F -statistics. When we say that there is relatively little differentiation
among populations within regions and that differences among populations are responsible for
most of the among population differences, we mean that the evolutionary distance4 between
any two haplotypes from populations within the same region is relatively small while the
evolutionary distance between haplotypes from different regions is relatively large. And by
“evolutionary distance” we mean both the distance between haplotypes reflected in δij and
the distance due to the extra time it takes haplotypes from different populations to trace
their ancestry back to the same population.

Notice also that Φ-statistics follow the same rules as Wright’s F -statistics, namely

1 − ΦST = (1 − ΦSC)(1 − ΦCT )

0.754 = (0.956)(0.78) ,

within the bounds of rounding error.5

An extension

When we were discussing the coalescent in structured populations, you may recall that I
pointed out that there is a relationship between FST and coalescent times.6 Specifically,

4Measured on the minimum spanning tree.
5There wouldn’t be any rounding error if we had access to the raw data.
6Look back at our discussion of the coalescent (http://darwin.eeb.uconn.edu/eeb348-notes/

coalescent.pdf) for the details.
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Slatkin [4] pointed out that if mutation is rare then

FST ≈ t̄− t̄0
t̄

,

where t̄ is the average time to coalescence for two genes drawn at random without respect
to population and t̄0 is the average time to coalescence for two genes drawn at random from
the same populations. Results in [3] show that when δij is linearly proportional to the time
since two sequences have diverged, ΦST is a good estimator of FST when FST is thought
of as a measure of the relative excess of coalescence time resulting from dividing a species
into several population. In other words if δij is a good measure of the evolutionary distance
between sequences in the sense that it is directly proportional to the time since the sequences
diverged, then the combination of haplotype frequency differences and evolutionary distances
among haplotypes may provide insight into the evolutionary relationships among populations
of the same species. For yet another way of saying it, if δij is proportion to divergence time,
then φST tells us how much longer we have to wait for haplotypes to coalesce as a result of
the population being subdivided.
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Creative Commons License

These notes are licensed under the Creative Commons Attribution License. To view a copy
of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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