
Inbreeding and self-fertilization

Introduction

Remember that long list of assumptions associated with derivation of the Hardy-Weinberg
principle that we just finished? Well, we’re about to begin violating assumptions to explore
the consequences, but we’re not going to violate them in order. We’re first going to violate
Assumption #2:

Genotypes mate at random with respect to their genotype at this particular locus.

There are many ways in which this assumption might be violated:

• Some genotypes may be more successful in mating than others — sexual selection.

• Genotypes that are different from one another may mate more often than expected —
disassortative mating, e.g., self-incompatibility alleles in flowering plants, MHC loci in
humans (the smelly t-shirt experiment [2]).

• Genotypes that are similar to one another may mate more often than expected —
assortative mating.

• Some fraction of the offspring produced may be produced asexually.

• Individuals may mate with relatives — inbreeding.

– self-fertilization

– sib-mating

– first-cousin mating

– parent-offspring mating

– etc.
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When there is sexual selection or disassortative mating genotypes differ in their chances
of being included in the breeding population. As a result, allele and genotype frequencies
will tend to change from one generation to the next. We’ll talk a little about these types of
departures from random mating when we discuss the genetics of natural selection in a few
weeks, but we’ll ignore them for now. In fact, we’ll also ignore assortative mating, since it’s
properties are fairly similar to those of inbreeding, and inbreeding is easier to understand.
We’ll also ignore asexual reproduction, since genotypes simply reproduce themselves and the
genetic composition of the population doesn’t change.1

Self-fertilization

Self-fertilization is the most extreme form of inbreeding possible, and it is characteristic of
many flowering plants and some hermaphroditic animals, including freshwater snails and
that darling of developmental genetics, Caenorhabditis elegans.2 It’s not too hard to figure
out what the consequences of self-fertilization will be without doing any algebra.3

• All progeny of homozygotes are themselves homozygous.

• Half of the progeny of heterozygotes are heterozygous and half are homozygous.

So you’d expect that the frequency of heterozygotes would be halved every generation,
that the frequency of homozygotes would increase, and that the allele frequencies wouldn’t

1Assuming, of course, that all of the other assumptions underlying Hardy-Weinberg continue to apply.
In the real world, the genetic composition of the population will change, but we’re not going to discuss
how asexual reproduction influences changes in the genotype composition of populations unless there is
overwhelming demand to do so.

2It could be that it is characteristic of many hermaphroditic animal parasites, but I’m a plant biologist.
I know next to nothing about animal mating systems, so I don’t have a good feel for how extensively self-
fertilization has been looked for in hermaphroditic animals. You should also know that I exaggerated when I
wrote that “self-fertilization is the most extreme form of inbreeding.” (Watch me carefully. I have a tendency
to exaggerate in the main text of these notes. I usually try to provide the complicating details in footnotes
in the hope that they’ll be less distracting here.) The form of self-fertilization I’m going to describe actually
isn’t the most extreme form of self-fertilization possible. That honor belongs to gametophytic self-fertilization
in homosporous plants. The offspring of gametophytic self-fertilization are uniformly homozygous at every
locus in the genome. If you don’t know what gametophytic self-fertilization is, you’re not alone. Ask me or
see [1] if your want more details.

3As you’ll see, though, I often resort to algebra, because it makes things even clearer.
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change,4 and you’d be right. To see why, consider the following mating table:5

Offspring genotype
Mating frequency A1A1 A1A2 A2A2

A1A1 × A1A1 x11 1 0 0
A1A2 × A1A2 x12

1
4

1
2

1
4

A2A2 × A2A2 x22 0 0 1

Using the same technique we used to derive the Hardy-Weinberg principle, we can calculate
the frequency of the different offspring genotypes from the above table.

x′11 = x11 + x12/4 (1)

x′12 = x12/2 (2)

x′22 = x22 + x12/4 (3)

I use the ′ to indicate the next generation. Notice that in making this calculation I assume
that all other conditions associated with Hardy-Weinberg apply (meiosis is fair, no differences
among genotypes in probability of survival, no input of new genetic material, etc.). We can
also calculate the frequency of the A1 allele among offspring, namely

p′ = x′11 + x′12/2 (4)

= x11 + x12/4 + x12/4 (5)

= x11 + x12/2 (6)

= p (7)

These equations illustrate two very important principles that are true with any system
of strict inbreeding:

1. Inbreeding does not cause allele frequencies to change, but it will generally cause
genotype frequencies to change.6

4Since half of the homozygous offspring carry one of the two alleles and the other half carry the other
one, the overall frequency of alleles doesn’t change. The alleles in heterozygotes are simply sorted into
homozygous and heterozygous progeny in a 1:2:1 ratio. The frequency of the two homozygotes is increased
equally.

5Note: The “missing” entries in the mating table are mating events that never happen.
6This is why I think of evolution as a change in the genotypic composition of a population over time, not

as a change in allele frequencies over time. I think a population that is self-fertilizing evolves, because the
genotype frequencies change even though the allele frequencies don’t.
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2. Inbreeding reduces the frequency of heterozygotes relative to Hardy-Weinberg expec-
tations. It need not eliminate heterozygotes entirely, but it is guaranteed to reduce
their frequency.7

• Suppose we have a population of hermaphrodites in which x12 = 0.5 and we
subject it to strict self-fertilization. Assuming that inbred progeny are as likely
to survive and reproduce as outbred progeny, x12 < 0.01 in six generations and
x12 < 0.0005 in ten generations.

Partial self-fertilization

Many plants reproduce by a mixture of outcrossing and self-fertilization. To a population
geneticist that means that they reproduce by a mixture of selfing and random mating.8 Now
I’m going to pull a fast one and derive the equations that determine how allele frequencies
change from one generation to the next without using a mating table. To do so, I’m going
to imagine that our population consists of a mixture of two populations. In one part of the
population all of the reproduction occurs through self-fertilization and in the other part all
of the reproduction occurs through random mating. If you think about it for a while, you’ll
realize that this is equivalent to imagining that each plant reproduces some fraction of the
time through self-fertilization and some fraction of the time through random mating.9 Let
σ be the fraction of progeny produced through self-fertilization, then

x′11 = p2(1− σ) + (x11 + x12/4)σ (8)

x′12 = 2pq(1− σ) + (x12/2)σ (9)

x′22 = q2(1− σ) + (x22 + x12/4)σ (10)

Notice that I use p2, 2pq, and q2 for the genotype frequencies in the part of the population
that’s mating at random. Question: Why can I get away with that?10

7Inbreeding that leads to distinct family lines, e.g., self-fertilization or sib-mating, will completely elimi-
nate heterozygosity over time.

8It would be more accurate to write: “Population geneticists usually model partial self-fertilization as
a mixture of self-fertilization and random mating. That simple model ignores a lot of complexity in how
self-fertilization happens, but it’s a useful approximation for most purposes.”

9Again, it would be more accurate to write: “If you think about it for a while, you’ll realize that for
purposes of understanding how genotype frequencies change through time this is equivalent to assuming
that each plant produces some fraction of its progeny through self-fertilization and some fraction through
outcrossing.”

10If you’re being good little boys and girls and looking over these notes before you get to class, when you
see Question in the notes, you’ll know to think about that a bit, because I’m not going to give you the
answer in the notes, I’m going to help you discover it during lecture.
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It takes a little more algebra than it did before, but it’s not difficult to verify that the
allele frequencies don’t change between parents and offspring.

p′ =
{
p2(1− σ) + (x11 + x12/4)σ

}
+ {pq(1− σ) + (x12/4)σ} (11)

= p(p+ q)(1− σ) + (x11 + x12/2)σ (12)

= p(1− σ) + pσ (13)

= p (14)

Because homozygous parents can always have heterozygous offspring (when they outcross),
heterozygotes are never completely eliminated from the population as they are with complete
self-fertilization. In fact, we can solve for the equilibrium frequency of heterozygotes, i.e.,
the frequency of heterozygotes reached when genotype frequencies stop changing.11 By
definition, an equilibrium for x12 is a value such that if we put it in on the right side of
equation (9) we get it back on the left side, or in equations

x̂12 = 2pq(1− σ) + (x̂12/2)σ (15)

x̂12(1− σ/2) = 2pq(1− σ) (16)

x̂12 =
2pq(1− σ)

(1− σ/2)
(17)

It’s worth noting several things about this set of equations:

1. I’m using x̂12 to refer to the equilibrium frequency of heterozygotes. I’ll be using hats
over variables to denote equilibrium properties throughout the course.12

2. I can solve for x̂12 in terms of p because I know that p doesn’t change. If p changed,
the calculations wouldn’t be nearly this simple.

3. The equilibrium is approached gradually (or asymptotically as mathematicians would
say). While a single generation of random mating will put genotypes in Hardy-
Weinberg proportions (assuming all the other conditions are satisfied), many gener-
ations may be required for genotypes to approach their equilibrium frequency with
partial self-fertilization.

11This is analogous to stopping the calculation and re-calculation of allele frequencies in the EM algorithm
when the allele frequency estimates stop changing.

12Unfortunately, I’ll also be using hats to denote estimates of unknown parameters, as I did when discussing
maximum-likelihood estimates of allele frequencies. I apologize for using the same notation to mean different
things, but I’m afraid you’ll have to get used to figuring out the meaning from the context. Believe me.
Things are about to get a lot worse. Wait until I tell you how many different ways population geneticists
use a parameter f that is commonly called the inbreeding coefficient.
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Inbreeding coefficients

Now that we’ve found an expression for x̂12 we can also find expressions for x̂11 and x̂22. The
complete set of equations for the genotype frequencies with partial selfing are:

x̂11 = p2 +
σpq

2(1− σ/2)
(18)

x̂12 = 2pq − 2

(
σpq

2(1− σ/2)

)
(19)

x̂22 = q2 +
σpq

2(1− σ/2)
(20)

Notice that all of those equations have a term σ/(2(1− σ/2)). Let’s call that term f . Then
we can save ourselves a little hassle by rewriting the above equations as:

x̂11 = p2 + fpq (21)

x̂12 = 2pq(1− f) (22)

x̂22 = q2 + fpq (23)

Now you’re going to have to stare at this a little longer, but notice that x̂12 is the frequency
of heterozygotes that we observe and 2pq is the frequency of heterozygotes we’d expect under
Hardy-Weinberg in this population.13 So if we divide both sides of equation (22) by 2pq, we
get

1− f =
x̂12
2pq

(24)

f = 1− x̂12
2pq

(25)

= 1− observed heterozygosity

expected heterozygosity
(26)

f is the inbreeding coefficient. When defined as 1 - (observed heterozygosity)/(expected
heterozygosity) it can be used to measure the extent to which a particular population departs

13In both cases, I’m assuming that we have observed the genotype and allele frequencies without error.
When we talk about estimating f a little later, you’ll see how things work in the real world (as opposed to
how they work in the imaginary world I’m fond of spending my time in).
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from Hardy-Weinberg expectations.14 When f is defined in this way, I refer to it as the
population inbreeding coefficient.15

But f can also be regarded as a function of a particular system of mating. With par-
tial self-fertilization the population inbreeding coefficient when the population has reached
equilibrium is σ/(2(1 − σ/2)). When regarded as the inbreeding coefficient predicted by a
particular system of mating, I refer to it as the equilibrium inbreeding coefficient.

We’ll encounter one more definition for f once I’ve introduced idea of identity by descent.

Identity by descent

Self-fertilization is, of course, only one example of the general phenomenon of inbreeding —
non-random mating in which individuals mate with close relatives more often than expected
at random. We’ve already seen that the consequences of inbreeding can be described in
terms of the inbreeding coefficient, f and I’ve introduced you to two ways in which f can be
defined.16 I’m about to introduce you to one more, but first I have to tell you about identity
by descent.

Two alleles at a single locus are identical by descent if they are identical copies of
the same allele in some earlier generation, i.e., both are copies that arose by DNA
replication from the same ancestral sequence without any intervening mutation.

We’re more used to classifying alleles by type than by descent. Although we don’t usually
say it explicitly, we regard two alleles as the “same,” i.e., identical by type, if they have the
same phenotypic effects. Whether or not two alleles are identical by descent, however, is a
property of their genealogical history, not of their phenotypic effects. Consider the following
two scenarios:

Identity by descent
A1 → A1

↗
A1

↘
A1 → A1

14f can be negative if there are more heterozygotes than expected, as might be the case if cross-homozygote
matings are more frequent than expected at random.

15To be honest, I’ll try to remember to refer to it this way. Chances are that I’ll forget sometimes and
just call it the inbreeding coefficient. If I do, you’ll either have to figure out what I mean from the context
or ask me to be more explicit.

16See paragraphs above describing the population and equilibrium inbreeding coefficient.
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Identity by type
A1 → A1

↗
A1

↘
A2 → A1

↑ ↑
mutation mutation

In both scenarios, the alleles at the end of the process are identical in type, i.e., they’re
both A1 alleles and they have the same phenotypic effect. In the second scenario, however,
they are identical in type only because one of the alleles has two mutations in its history.17

So alleles that are identical by descent will also be identical by type, but alleles that are
identical by type need not be identical by descent.18

A third definition for f is the probability that two alleles chosen at random are identical
by descent.19 Of course, there are several aspects to this definition that need to be spelled
out more explicitly.20

• In what sense are the alleles chosen at random, within an individual, within a particular
population, within a particular set of populations?

• How far back do we trace the ancestry of alleles to determine whether they’re identical
by descent? Two alleles that are identical by type may not share a common ancestor
if we trace their ancestry only 20 generations, but they may share a common ancestor
if we trace their ancestry back 1000 generations and neither may have undergone any
mutations since they diverged from one another.

Let’s imagine for a moment, however, that we’ve traced back the ancestry of all alleles
in a particular population to what we call a reference population, i.e., a population in which
we regard all alleles as unrelated. That’s equivalent to saying that alleles chosen at random
from this population have zero probability of being identical by descent, even if they are
identical by type. Given this assumption we can write down the genotype frequencies in a
descendant population once we know f , where we define f as the probability that two alleles

17Notice that we could also have had each allele mutate independently to A2.
18Systematists in the audience will recognize this as the problem of homoplasy.
19Notice that if we adopt this definition for f it can only take on values between 0 and 1. When used in

the sense of a population or equilibrium inbreeding coefficient, however, f can be negative.
20OK, maybe “of course” is overstating it. It isn’t really obvious that more clarity is needed until I point

out the ambiguities in the bullet points that follow.

8



chosen at random in the descendant population are identical by descent, i.e., descended from
just one of the alleles in the reference population.

x11 = p2(1− f) + fp (27)

x12 = 2pq(1− f) (28)

x22 = q2(1− f) + fq . (29)

It may not be immediately apparent, but you’ve actually seen these equations before in a
different form. Since p− p2 = p(1− p) = pq and q − q2 = q(1− q) = pq these equations can
be rewritten as

x11 = p2 + fpq (30)

x12 = 2pq(1− f) (31)

x22 = q2 + fpq . (32)

This is the third way in which f can be defined and used that we will discuss,21 and
you can now probably see why population geneticists tend to play fast and loose with the
definitions. If we ignore the distinction between identity by type and identity by descent,
then the equations we used earlier to show the relationship between genotype frequencies,
allele frequencies, and f (defined as a measure of departure from Hardy-Weinberg expec-
tations) are identical to those used to show the relationship between genotype frequencies,
allele frequencies, and f (defined as a the probability that two randomly chosen alleles in
the population are identical by descent).
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