
The Hardy-Weinberg Principle and
estimating allele frequencies

Introduction

To keep things relatively simple, we’ll spend much of our time in the first part of this course
talking about variation at a single genetic locus, even though alleles at many different loci
are involved in expression of most morphological or physiological traits. We’ll also spend
most of our time thinking about only two alleles at that one locus.1 Towards the end of
the course, we’ll study the genetics of continuous (quantitative) variation, but until then
you can asssume that I’m talking about variation at a single locus unless I specifically say
otherwise.2

The genetic composition of populations

When I talk about the genetic composition of a population, I’m referring to three aspects of
genetic variation within that population:3

1. The number of alleles at a locus.

2. The frequency of alleles at the locus.

3. The frequency of genotypes at the locus.

1I used to apologize for spending so much time thinking about loci that had only two alleles, but I
feel less apologetic now. Much of the population genetic data that is now being gathered derives from
single-nucleotide polymorphisms, which are typically polymorphisms involving only two alleles.

2You’ll see in a week or a week and a half when we talk about analysis of population structure that we
start discussing variation at many loci. But you’ll also see that in spite of discussing variation at many loci
simultaneously, virtually all of the underlying mathematics is based on the properties of those loci considered
one at a time.

3At each locus I’m talking about. Remember, I’m only talking about one locus at a time, unless I
specifically say otherwise. We’ll see why this matters when I outline the ideas behind genome-wide association
mapping towards the end of the course.
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It may not be immediately obvious why we need both (2) and (3) to describe the genetic
composition of a population, so let me illustrate with two hypothetical populations:

A1A1 A1A2 A2A2

Population 1 50 0 50
Population 2 25 50 25

It’s easy to see that the frequency of A1 is 0.5 in both populations,4 but the genotype
frequencies are very different. In point of fact, we don’t need both genotype and allele
frequencies. We could get away with only genotype frequencies, since we can always calculate
allele frequencies from genotype frequencies. But there are fewer allele frequencies than
genotype frequencies — only one allele frequency when there are two alleles at a locus. So
working with allele frequencies is more convenient when we can get away with it. The
challenge is that we can’t get genotype frequencies from allele frequencies unless . . .

Derivation of the Hardy-Weinberg principle

We saw last time using the data from Zoarces viviparus that we can describe empirically and
algebraically how genotype frequencies in one generation are related to genotype frequencies
in the next. Let’s explore that a bit further. To do so we’re going to use a technique that
is broadly useful in population genetics,5 i.e., we’re going to construct a mating table. A
mating table consists of three components:

1. A list of all possible genotype pairings.

2. The frequency with which each genotype pairing occurs.

3. The genotypes produced by each pairing.

4p1 = 2(50)/200 = 0.5, p2 = (2(25) + 50)/200 = 0.5.
5Although to be honest, we won’t see mating tables again after the first couple weeks of the semester.
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Offspring genotype
Female × Male Frequency A1A1 A1A2 A2A2

A1A1 × A1A1 x211 1 0 0
A1A2 x11x12

1
2

1
2

0
A2A2 x11x22 0 1 0

A1A2 × A1A1 x12x11
1
2

1
2

0
A1A2 x212

1
4

1
2

1
4

A2A2 x12x22 0 1
2

1
2

A2A2 × A1A1 x22x11 0 1 0
A1A2 x22x12 0 1

2
1
2

A2A2 x222 0 0 1

Notice that I’ve distinguished matings by both maternal and paternal genotype. While it’s
not necessary for this example, we will see examples later in the course where it’s important
to distinguish a mating in which the female is A1A1 and the male is A1A2 from ones in which
the female is A1A2 and the male is A1A1. You are also likely to be surprised to learn that
just in writing this table we’ve already made three assumptions about the transmission of
genetic variation from one generation to the next:

Assumption #1 Genotype frequencies are the same in males and females, e.g., x11 is the
frequency of the A1A1 genotype in both males and females.6

Assumption #2 Genotypes mate at random with respect to their genotype at this partic-
ular locus.

Assumption #3 Meiosis is fair. More specifically, we assume that there is no segregation
distortion; no gamete competition; no differences in the developmental ability of eggs,
or the fertilization ability of sperm.7 It may come as a surprise to you, but there are
alleles at some loci in some organisms that subvert the Mendelian rules, e.g., the t
allele in house mice, segregation distorter in Drosophila melanogaster, and spore killer
in Neurospora crassa.8

6It would be easy enough to relax this assumption, but it makes the algebra more complicated without
providing any new insight, so we won’t bother with relaxing it unless someone asks. This is just the first of
many examples where I present the math, but I keep it as simple as I possibly can.

7We are also assuming that we’re looking at offspring genotypes at the zygote stage, so that there hasn’t
been any opportunity for differential survival.

8If you’re interested, a pair of papers describing work on spore killer in Neurospora appeared in 2012 [3, 4].
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Now that we have this table we can use it to calculate the frequency of each genotype in
newly formed zygotes in the population,9 provided that we’re willing to make three additional
assumptions:

Assumption #4 There is no input of new genetic material, i.e., gametes are produced
without mutation, and all offspring are produced from the union of gametes within
this population, i.e., no migration from outside the population.

Assumption #5 The population is of infinite size so that the actual frequency of matings
is equal to their expected frequency and the actual frequency of offspring from each
mating is equal to the Mendelian expectations.

Assumption #6 All matings produce the same number of offspring, on average.

Taking these three assumptions together allows us to conclude that the frequency of a par-
ticular genotype in the pool of newly formed zygotes is∑

(frequency of mating)(frequency of genotype produce from mating) .

So

freq.(A1A1 in zygotes) = x211 +
1

2
x11x12 +

1

2
x12x11 +

1

4
x212

= x211 + x11x12 +
1

4
x212

= (x11 + x12/2)2

= p2

freq.(A1A2 in zygotes) = 2pq

freq.(A2A2 in zygotes) = q2

Those frequencies probably look pretty familiar to you. They are, of course, the familiar
Hardy-Weinberg proportions. But we’re not done yet. In order to say that these proportions
will also be the genotype proportions of adults in the progeny generation, we have to make
two more assumptions:

Assumption #7 Generations do not overlap.10

Assumption #8 There are no differences among genotypes in the probability of survival.
9Not just the offspring from these matings.

10Or the allele frequency is the same in generations that do overlap.
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The Hardy-Weinberg principle

After a single generation in which all eight of the above assumptions are satisfied

freq.(A1A1 in adults) = p2 (1)

freq.(A1A2 in adults) = 2pq (2)

freq.(A2A2 in adults) = q2 (3)

It’s vital to understand the logic here.

1. If Assumptions #1–#8 are true, then equations 1–3 must be true.

2. If genotypes are not in Hardy-Weinberg proportions, one or more of Assumptions #1–
#8 must be false.

3. If genotypes are in Hardy-Weinberg proportions, one or more of Assumptions #1–#8
may still be violated.

4. Assumptions #1–#8 are sufficient for Hardy-Weinberg to hold, but they are not nec-
essary for Hardy-Weinberg to hold.

Point (2) is why the Hardy-Weinberg principle is so important. There isn’t a population
of any organism anywhere in the world that satisfies all 8 assumptions, even for a single
generation.11 But all possible evolutionary processes within populations cause a violation of
at least one of these assumptions. Departures from Hardy-Weinberg are one way in which
we can detect those processes and estimate their magnitude.12

Estimating allele frequencies

Before we can determine whether genotypes in a population are in Hardy-Weinberg propor-
tions, we need to be able to estimate the frequency of both genotypes and alleles. This is
easy when you can identify all of the alleles within genotypes, but suppose that we’re trying
to estimate allele frequencies in the ABO blood group system in humans. Then we have a
situation that looks like this:

11There may be some that come reasonably close, but none that fulfill them exactly. There aren’t any
populations of infinite size, for example.

12Actually, there’s a ninth assumption that I didn’t mention. Everything I said here depends on the
assumption that the locus we’re dealing with is autosomal. We can talk about what happens with sex-linked
loci, if you want. But again, mostly what we get is algebraic complications without a lot of new insight.
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Phenotype A AB B O
Genotype(s) aa ao ab bb bo oo
No. in sample NA NAB NB NO

Now we can’t directly count the number of a, b, and o alleles. What do we do? Well,
nearly 70 years ago, some geneticists figured out one approach with a method they called
“gene counting” [1] and that statisticians later generalized for a wide variety of purposes
and called the EM algorithm [2]. It uses a trick you’ll see repeatedly through this course.
When we don’t know something we want to know, we pretend that we know it and do some
calculations with what we just pretended to know. If we’re lucky, we can fiddle with our
calculations a bit to relate the thing that we pretended to know to something we actually
do know so we can figure out what we wanted to know. Make sense? Probably not. Let’s
try an example and see if that helps.

If we knew pa, pb, and po, we could figure out how many individuals with the A phenotype
we expect to have the aa genotype and how many we expect to have the ao genotype, namely

Naa = nA

(
p2a

p2a + 2papo

)

Nao = nA

(
2papo

p2a + 2papo

)
.

Obviously we could do the same thing for the B phenotype:

Nbb = nB

(
p2b

p2b + 2pbpo

)

Nbo = nB

(
2pbpo

p2b + 2pbpo

)
.

Notice that Nab = NAB and Noo = NO (lowercase subscripts refer to genotypes, uppercase to
phenotypes). What we’ve just done is the “E” part of the EM algorithm, E for “expectation.”
If we knew all this, then we could calculate pa, pb, and po from

pa =
2Naa +Nao +Nab

2N

pb =
2Nbb +Nbo +Nab

2N

po =
2Noo +Nao +Nbo

2N
,
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where N is the total sample size. That’s the “M” part of rhe EM algorithm, M for “maxi-
mization.”13

Surprisingly enough we can actually estimate the allele frequencies by using this trick.
Just take a guess at the allele frequencies. Any guess will do. Then calculate Naa, Nao,
Nbb, Nbo, Nab, and Noo as described in the preceding paragraph.14 That’s the Expectation
part the EM algorithm. Now take the values for Naa, Nao, Nbb, Nbo, Nab, and Noo that
you’ve calculated and use them to calculate new values for the allele frequencies. That’s
the Maximization part of the EM algorithm. It’s called “maximization” because what
you’re doing is calculating maximum-likelihood estimates of the allele frequencies, given the
observed (and made up) genotype counts.15 Chances are your new values for pa, pb, and po
won’t match your initial guesses, but16 if you take these new values and start the process
over and repeat the whole sequence several times, eventually the allele frequencies you get
out at the end match those you started with. These are maximum-likelihood estimates of
the allele frequencies.17

Consider the following example:

Phenotype A AB AB O
No. in sample 25 50 25 15

We’ll start with the guess that pa = 0.33, pb = 0.33, and po = 0.34. With that assumption
we would calculate that 25(0.332/(0.332 + 2(0.33)(0.34))) = 8.168 of the A phenotypes in
the sample have genotype aa, and the remaining 16.832 have genotype ao. Similarly, we can
calculate that 8.168 of the B phenotypes in the population sample have genotype bb, and the
remaining 16.832 have genotype bo. Now that we have a guess about how many individuals
of each genotype we have,18 we can calculate a new guess for the allele frequencies, namely
pa = 0.362, pb = 0.362, and po = 0.277. By the time we’ve repeated this process four more
times, the allele frequencies aren’t changing anymore, and the maximum likelihood estimate
of the allele frequencies is pa = 0.372, pb = 0.372, and po = 0.256.

13“Maximization of what?” you may ask. “Maximization of the likelihood is the answer, which probably
isn’t helpful now, but should be soon.

14Chances are Naa, Nao, Nbb, and Nbo won’t be integers. That’s OK. Pretend that there really are
fractional animals or plants in your sample and proceed.

15If you don’t know what maximum-likelihood estimates are, don’t worry. We’ll get to that in a moment.
16Yes, truth is sometimes stranger than fiction.
17I should point out that this method assumes that genotypes are found in Hardy-Weinberg proportions.
18Since we’re making these genotype counts up, we can also pretend that it makes sense to have fractional

numbers of genotypes.
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What is a maximum-likelihood estimate?

I just told you that the method I described produces “maximum-likelihood estimates” for
the allele frequencies, but I haven’t told you what a maximum-likelihood estimate is . The
good news is that you’ve been using maximum-likelihood estimates for as long as you’ve
been estimating anything, without even knowing it. Although it will take me a while to
explain it, the idea is actually pretty simple.

Suppose we had a sock drawer with two colors of socks, red and green. And suppose
we were interested in estimating the proportion of red socks in the drawer. One way of
approaching the problem would be to mix the socks well, close our eyes, take one sock from
the drawer, record its color and replace it. Suppose we do this N times. We know that the
number of red socks we’ll get might be different the next time, so the number of red socks
we actually get is a random variable. Let’s call that random variable K. Now suppose in
our actual experiment we find k red socks, i.e., the value our random variable takes on is k
or putting it in an equation: K = k. If we knew p, the proportion of red socks in the drawer,
we could calculate the probability of getting the data we observed, namely

P(K = k|p,N) =

(
N

k

)
pk(1− p)(N−k) . (4)

This is the binomial probability distribution. The part on the left side of the equation is
read as “The probability that we get k red socks in our sample given the value of p and the
sample size N .” The word “given” means that we’re calculating the probability of our data
conditional on the (unknown) value p and the (known) sample size N .

Of course we don’t know p, so what good does writing (4) do? Well, suppose we reverse
the question to which equation (4) is an answer and call the expression in (4) the “likelihood
of the data.” Suppose further that we find the value of p that makes the likelihood bigger
than any other value we could pick.19 Then p̂ is the maximum-likelihood estimate of p.20

In the case of the ABO blood group that we just talked about, the likelihood is a bit
more complicated(

N

NANABNBNO

)(
p2a + 2papo

)NA
2pap

NAB
b

(
p2b + 2pbpo

)NB
(
p2o
)NO

(5)

This is a multinomial probability distribution. It turns out that one way to find the values
of pa, pb, and po is to use the EM algorithm I just described.21 There isn’t a simple formula

19Technically, we treat P(K = k|p,N) as a function of p, find the value of p that maximizes it, and call
that value p̂.

20You’ll be relieved to know that in this case, p̂ = k/N .
21There’s another way I’d be happy to describe if you’re interested, but it’s a lot more complicated.
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that allows us to write down an expression for the maximum-likelihood estimate of the allele
frequencies in terms of the phenotype frequencies. We have to use an algorithm to find them,
and the EM algorithm happens to be a particularly convenient algorithm to use.

An introduction to Bayesian inference

Maximum-likelihood estimates have a lot of nice features, but they are also a slightly back-
wards way of looking at the world. The likelihood of the data is the probability of the data,
x, given parameters that we don’t know, φ, i.e, P(x|φ). It seems a lot more natural to think
about the probability that the unknown parameter takes on some value, given the data, i.e.,
P(φ|x). Surprisingly, these two quantities are closely related. Bayes’ Theorem tells us that

P(φ|x) =
P(x|φ)P(φ)

P(x)
. (6)

We refer to P(φ|x) as the posterior distribution of φ, i.e., the probability that φ takes on a
particular value given the data we’ve observed, and to P(φ) as the prior distribution of φ, i.e.,
the probability that φ takes on a particular value before we’ve looked at any data. Notice
how the relationship in (6) mimics the logic we use to learn about the world in everyday life.
We start with some prior beliefs, P(φ), and modify them on the basis of data or experience,
P(x|φ), to reach a conclusion, P(φ|x). That’s the underlying logic of Bayesian inference.

Estimating allele frequencies with two alleles

Let’s suppose we’ve collected data from a population of Protea repens22 and have found 7
alleles coding for the fast allele at a enzyme locus encoding glucose-phosphate isomerase in
a sample of 20 alleles. We want to estimate the frequency of the fast allele. The maximum-
likelihood estimate is 7/20 = 0.35, which we got by finding the value of p that maximizes

P(k|N, p) =

(
N

k

)
pk(1− p)N−k ,

where N = 20 and k = 7. A Bayesian uses the same likelihood, but has to specify a prior
distribution for p. If we didn’t know anything about the allele frequency at this locus in P.
repens before starting the study, it makes sense to express that ignorance by choosing P(p)

22A few of you may recognize that I didn’t choose that species entirely at random, even though the “data”
I’m presenting here are entirely fanciful.
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to be a uniform random variable on the interval [0, 1]. That means we regarded all values of
p as equally likely prior to collecting the data.23

Until the early 1990s24 it was necessary to do a bunch of complicated calculus to combine
the prior with the likelihood to get a posterior. Since the early 1990s statisticians have used a
simulation approach, Monte Carlo Markov Chain sampling, to construct numerical samples
from the posterior. For the problems encountered in this course, we’ll mostly be using
the freely available software package Stan through its interface in R, rstan, to implement
Bayesian analyses. For the problem we just encountered, here’s the code that’s needed to
get our results:25

data {

int<lower=0> N; // the sample size

int<lower=0> k; // the number of A_1 alleles observed

}

parameters {

real<lower=0, upper=1> p; // the allele frequency

}

model {

// likelihood

//

k ~ binomial(N, p);

// prior

p ~ uniform(0.0, 1.0);

}

We can run this is in R by source()’ing the following code. Remember that in our fictitious
example, we found 7 fast alleles in a sample of 20, i.e., k = 7 and N = 20.

## Load the rstan library

23If we had prior information about the likely values of p, we’d pick a different prior distribution to reflect
our prior information. See the Summer Institute notes for more information, if you’re interested.

24You are probably thinking to yourself “The 1990s? That’s ancient history. Why is Holsinger making
such a big deal about this” Please cut me a little slack. I know that most of you weren’t born in the early
90s, but I’d already taught this course two or three times by the time the paper I’m about to refer to was
published.

25This code and other Stan code used in the course can be found on the course web site by following the
links associated with the corresponding lecture.
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##

library(rstan)

## set the number of chains to the number of cores in the computer

##

options(mc.cores = parallel::detectCores())

## set up the data

## N: sample size

## k: number of A1 alleles

stan_data <- list(N = 20,

k = 7)

## Invoke stan

##

fit <- stan("binomial-model.stan",

data = stan_data,

refresh = 0)

## print the results on the console with 3 digits after the decimal

##

print(fit, digits = 3)

Here’s what you’ll see in the terminal.26

> source("binomial-model.R")

Loading required package: StanHeaders

Loading required package: ggplot2

rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling

options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling

rstan_options(auto_write = TRUE)

Inference for Stan model: binomial-model.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

26Your computer may appear to freeze after the message about avoiding recompilation. Don’t worry. It’s
just thinking.
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mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

p 0.360 0.003 0.099 0.179 0.289 0.357 0.424 0.561 1475 1.001

lp__ -14.926 0.017 0.719 -16.901 -15.088 -14.646 -14.470 -14.421 1691 1.000

Samples were drawn using NUTS(diag_e) at Sat Jun 5 16:54:55 2021.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

>

Most of the column headings should be fairly self-explanatory. mean is our best guess for
the value for the frequency of the fast allele, the posterior mean of p. sd is the posterior
standard deviation of p. It’s our best guess of the uncertainty associated with our estimate
of the frequency of the fast allele. The 2.5%, 50%, and 97.5% columns are the percentiles of
the posterior distribution. The [2.5%, 97.5%] interval is the 95% credible interval, which is
analogous to the 95% confidence interval in classical statistics, except that we can say that
there’s a 95% chance that the frequency of the fast allele lies within this interval.27 Since
the results are from a simulation, different runs will produce slightly different results. In
this case, we have a posterior mean of about 0.36 (as opposed to the maximum-likelihood
estimate of 0.35), and there is a 95% chance that p lies in the interval [0.18, 0.56].

Returning to the ABO example

Here’s data from the ABO blood group:28

Phenotype A AB B O Total
Observed 862 131 365 702 2060

To estimate the underlying allele frequencies, pA, pB, and pO, we have to remember how the
allele frequencies map to phenotype frequencies:

Freq(A) = p2A + 2pApO

Freq(AB) = 2pApB

Freq(B) = p2B + 2pBpO

Freq(O) = p2O .

27If you don’t understand why that’s different from a standard confidence interval, ask me about it.
28This is almost the last time! I promise.

12



Hers’s the Stan code we use to estimate the allele frequencies:

data {

int<lower=0> N_A;

int<lower=0> N_AB;

int<lower=0> N_B;

int<lower=0> N_O;

}

transformed data {

int<lower=0> N[4];

N[1] = N_A;

N[2] = N_AB;

N[3] = N_B;

N[4] = N_O;

}

parameters {

// the three allele frequencies add to 1

//

simplex[3] p;

}

transformed parameters {

real<lower=0, upper=1> p_a;

real<lower=0, upper=1> p_b;

real<lower=0, upper=1> p_o;

// the four phenotype frequencies add to 1

//

simplex[4] x;

// allele frequencies

//

p_a = p[1];

p_b = p[2];

p_o = p[3];

// phenotype frequencies
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//

// A

x[1] = p_a^2 + 2*p_a*p_o;

// AB

x[2] = 2*p_a*p_b;

// B

x[3] = p_b^2 + 2*p_b*p_o;

// O

x[4] = p_o^2;

}

model {

// likelihood

//

N ~ multinomial(x);

// prior

//

p ~ dirichlet(rep_vector(1.0, 3));

}

The dirichlet() prior produces a uniform distribution across all three allele frequencies
while ensuring that they sum to 1. Here are the results of the analysis:

> source("abo-model.R")

Inference for Stan model: abo-model.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

p[1] 0.281 0.000 0.008 0.266 0.276 0.281 0.287 0.297 3814 1.000

p[2] 0.129 0.000 0.005 0.119 0.126 0.129 0.133 0.140 3685 1.000

p[3] 0.589 0.000 0.008 0.573 0.584 0.589 0.595 0.605 3428 1.001

p_a 0.281 0.000 0.008 0.266 0.276 0.281 0.287 0.297 3814 1.000

p_b 0.129 0.000 0.005 0.119 0.126 0.129 0.133 0.140 3685 1.000

p_o 0.589 0.000 0.008 0.573 0.584 0.589 0.595 0.605 3428 1.001

x[1] 0.411 0.000 0.010 0.391 0.404 0.411 0.418 0.431 4033 1.000

x[2] 0.073 0.000 0.003 0.067 0.071 0.073 0.075 0.079 3417 1.001

x[3] 0.169 0.000 0.007 0.156 0.164 0.169 0.174 0.183 3764 1.000

x[4] 0.347 0.000 0.010 0.328 0.341 0.347 0.354 0.366 3430 1.001

lp__ -2506.009 0.022 0.963 -2508.531 -2506.366 -2505.715 -2505.316 -2505.068 1915 1.000
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Samples were drawn using NUTS(diag_e) at Sat Jun 5 17:23:22 2021.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

>

The posterior means for the allele frequencies are indistinguishable from the maximum-
likelihood estimates (pa = 0.281, pb = 0.129, and po = 0.59), but we also have 95% credible
intervals so that we have an assessment of how reliable the Bayesian estimates are. We also
have estimates of the phenotype frequencies and their reliability. Getting estimates of the
reliability for the allele frequencies from a likelihood analysis is possible, but it takes a fair
amount of additional work.
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