
Analyzing the genetic structure of
populations

Introduction

So far we’ve focused on inbreeding as one important way that populations may fail to mate
at random, but there’s another way in which virtually all populations and species fail to mate
at random. Individuals tend to mate with those that are nearby. Even within a fairly small
area, phenomena like nearest neighbor pollination in flowering plants or home-site fidelity in
animals can cause mates to be selected in a geographically non-random way. What are the
population genetic consequences of this form of non-random mating?

Well, if you think about it a little, you can probably figure it out. Since individuals that
occur close to one another tend to be more genetically similar than those that occur far
apart, the impacts of local mating will mimic those of inbreeding within a single, well-mixed
population.

A numerical example

For example, suppose we have two subpopulations of green lacewings, one of which occurs
in forests the other of which occurs in adjacent meadows.1 Suppose further that within each
subpopulation mating occurs completely at random, but that there is no mating between
forest and meadow individuals. Suppose we’ve determined allele frequencies in each popu-
lation at a locus coding for phosphoglucoisomerase (PGI), which conveniently has only two
alleles. The frequency of A1 in the forest is 0.4 and in the meadow in 0.7. We can easily
calculate the expected genotype frequencies within each population, namely

A1A1 A1A2 A2A2

Forest 0.16 0.48 0.36
Meadow 0.49 0.42 0.09

1Those of you who’ve been in EEB for a while will know that these are probably different species, but
humor me, and forget that you know that.

c© 2001-2023 Kent E. Holsinger



Suppose, however, we were to consider a combined population consisting of 100 indi-
viduals from the forest subpopulation and 100 individuals from the meadow subpopulation.
Then we’d get the following:2

A1A1 A1A2 A2A2

From forest 16 48 36
From meadow 49 42 9
Total 65 90 45

So the frequency of A1 is (2(65) + 90)/(2(65 + 90 + 45)) = 0.55. Notice that this is just
the average allele frequency in the two subpopulations, i.e., (0.4 + 0.7)/2. Since each sub-
population has genotypes in Hardy-Weinberg proportions, you might expect the combined
population to have genotypes in Hardy-Weinberg proportions, but if you did you’d be wrong.
Just look.

A1A1 A1A2 A2A2

Expected (from p = 0.55) (0.3025)200 (0.4950)200 (0.2025)200
60.5 99.0 40.5

Observed (from table above) 65 90 45

The expected and observed don’t match, even though there is random mating within both
subpopulations. They don’t match because there isn’t random mating in the combined
population, only within each subpopulation. Forest lacewings choose mates at random from
other forest lacewings, but they never mate with a meadow lacewing (and vice versa). Our
sample includes two populations that don’t mix. As a result, heterozygotes in our combined
sample are less frequent (0.45 vs 0.495) than we’d expect if the population were well mixed
with an allelel frequency of 0.55. This is an example of what’s known as the Wahlund
effect [8].

The algebraic development

Even though you’ve only known me for a couple of weeks now, you should know me well
enough to know that I’m not going to be satisfied with a numerical example. You should
know that I now feel the need to do some algebra to describe this situation a little more
generally.

2If we ignore sampling error.
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Suppose we know allele frequencies in k subpopulations.3 Let pi be the frequency of A1

in the ith subpopulation. Then if we assume that all subpopulations contribute equally to
combined population,4 we can calculate expected and observed genotype frequencies the way
we did above:

A1A1 A1A2 A2A2

Expected p̄2 2p̄q̄ q̄2

Observed 1
k

∑
p2i

1
k

∑
2piqi

1
k

∑
q2i

where p̄ =
∑
pi/k and q̄ = 1 − p̄ are the average allele frequencies in the combined sample.

Now

1

k

∑
p2i =

1

k

∑
(pi − p̄+ p̄)2 (1)

=
1

k

∑(
(pi − p̄)2 + 2p̄(pi − p̄) + p̄2

)
(2)

=
1

k

∑
(pi − p̄)2 + p̄2 (3)

= Var(p) + p̄2 (4)

Similarly,

1

k

∑
2piqi = 2p̄q̄ − 2Var(p) (5)

1

k

∑
q2i = q̄2 + Var(p) (6)

Since Var(p) ≥ 0 by definition, with equality holding only when all subpopulations have
the same allele frequency, we can conclude that

• Homozygotes will be more frequent and heterozygotes will be less frequent than ex-
pected based on the allele frequency in the combined population.

• The magnitude of the departure from expectations is directly related to the magnitude
of the variance in allele frequencies across populations, Var(p).

3For the time being, I’m going to assume that we know the allele frequencies without error, i.e., that we
didn’t have to estimate them from data. We’ll deal with real life, i.e., how we can detect the Wahlund effect
when we have to estimate allele freqeuncies from data, a little later.

4We’d get the same result by relaxing this assumption, but the algebra gets messier, so why bother?
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• The effect will apply to any mixing of samples in which the subpopulations combined
have different allele frequencies.5

• The same general phenomenon will occur if there are multiple alleles at a locus, al-
though it is possible for one or a few heterozygotes to be more frequent than expected
if there is positive covariance in the constituent allele frequencies across populations.6

• The effect is analogous to inbreeding. Homozygotes are more frequent and heterozy-
gotes are less frequent than expected.7

To return to our earlier numerical example:

Var(p) =
(
(0.4− 0.55)2 + (0.7− 0.55)2

)
/2 (7)

= 0.0225 (8)

Expected Observed
A1A1 0.3025 + 0.0225 = 0.3250
A1A2 0.4950 - 2(0.0225) = 0.4500
A2A2 0.2025 + 0.0225 = 0.2250

Wright’s F -statistics

One limitation of the way I’ve described things so far is that Var(p) doesn’t provide a
convenient way to compare population structure from different samples. Var(p) can be
much larger if both alleles are about equally common in the whole sample than if one occurs
at a mean frequency of 0.99 and the other at a frequency of 0.01. Moreover, if you stare at
equations (4)–(6) for a while, you begin to realize that they look a lot like some equations
we’ve already encountered. Namely, if we were to define Fst

8 as Var(p)/p̄q̄, then we could

5For example, if we combine samples from different years or across age classes of long-lived organisms, we
may see a deficienty of heterozygotes in the sample purely as a result of allele frequency differences across
years. Remember that I told you one of the assumptions underlying derivation of the Hardy-Weinberg
principle is that generations are non-overlapping? This is why.

6If you’re curious about this, feel free to ask, but I’ll have to dig out my copy of Li [4] to answer. I don’t
carry those details around in my head.

7And this is what we predicted when we started.
8The reason for the subscript will become apparent later. It’s also very important to notice that I’m

defining FST here in terms of the population parameters p and Var(p). Again, we’ll return to the problem
of how to estimate FST from data a little later.
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rewrite equations (4)–(6) as

1

k

∑
p2i = p̄2 + Fstp̄q̄ (9)

1

k

∑
2piqi = 2p̄q̄(1− Fst) (10)

1

k

∑
q2i = q̄2 + Fstp̄q̄ (11)

And it’s not even completely artificial to define Fst the way I did. After all, the effect of
geographic structure is to cause matings to occur among genetically similar individuals. It’s
rather like inbreeding.9 Moreover, the extent to which this local mating matters depends
on the extent to which populations differ from one another. It turns out that p̄q̄ is the
maximum allele frequency variance possible, given the observed mean frequency. So one way
of thinking about Fst is that it measures the amount of allele frequency variance in a sample
relative to the maximum possible.10

There may, of course, be inbreeding within populations, too. But it’s easy to incor-
porate this into the framework, too.11 Let Hi be the actual heterozygosity in individuals
within subpopulations, Hs be the expected heterozygosity within subpopulations assuming
Hardy-Weinberg within populations, and Ht be the expected heterozygosity in the com-
bined population assuming Hardy-Weinberg over the whole sample.12 Then thinking of f
as a measure of departure from Hardy-Weinberg and assuming that all populations depart
from Hardy-Weinberg to the same degree, i.e., that they all have the same f , we can define

Fit = 1− Hi

Ht

.

Fit is the overall departure from Hardy-Weinberg in the entire sample. Let’s fiddle with FST

9To be precise, it is a form of positive assortative mating in which the choice of mates is based on
geographical proximity.

10I say “one way”, because there are several other ways to talk about Fst, too. But we won’t talk about
them until later.

11At least it’s easy once you’ve been shown how.
12Please remember that we’re assuming we know those frequencies exactly. In real applications, of course,

we’ll estimate those frequencies from data, so we’ll have to account for sampling error when we actually try to
estimate these things. If you’re getting the impression that I think the distinction between allele frequencies
as parameters, i.e., the real allele frequency in the population , and allele frequencies as estimates, i.e., the
sample frequencies from which we hope to estimate the paramters, is really important, you’re getting the
right impression.
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a bit.13

1− Fit =
Hi

Ht

=
(
Hi

Hs

)(
Hs

Ht

)
= (1− Fis)(1− Fst) ,

where Fis is the inbreeding coefficient within populations, i.e., f , and Fst has the same
definition as before.14 Ht is often referred to as the genetic diversity in a population. So
another way of thinking about Fst = (Ht−Hs)/Ht is that it’s the proportion of the diversity
in the sample that’s due to allele frequency differences among populations.

Estimating F -statistics

We’ve now seen the principles underlying Wright’s F -statistics. I should point out that
Gustave Malécot developed very similar ideas at about the same time as Wright, but since
Wright’s notation stuck,15 population geneticists generally refer to statistics like those we’ve
discussed as Wright’s F -statistics.16

Neither Wright nor Malécot worried too much about the problem of estimating F -
statistics from data. Both realized that any inferences about population structure are based
on a sample and that the characteristics of the sample may differ from those of the popula-
tion from which it was drawn, but neither developed any explicit way of dealing with those
differences. Wright develops some very ad hoc approaches in his book [12], but they have
been forgotten, which is good because they aren’t satisfactory and they shouldn’t be used.
There are now three reasonable approaches available:17

1. Nei’s G-statistics,

13Are you beginning to see how peculiar I am? Do you know anyone else who gets a kick out of playing
around with formulas and equations.

14It takes a fair amount of algebra to show that this definition of Fst is equivalent to the one I showed you
before, so you’ll just have to take my word for it.

15Probably because he published in English and Malécot published in French.
16The Hardy-Weinberg proportions should probably be referred to as the Hardy-Weinberg-Castle propor-

tions too, since Castle pointed out the same principle. For some reason, though, his demonstration didn’t
have the impact that Hardy’s and Weinberg’s did. So we generally talk about the Hardy-Weinberg principle.

17And as we’ll soon see, I’m not too crazy about one of these three. To my mind, there are really only
two approaches that anyone should consider, and those two approaches are really just variants of the same
basic idea.
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2. Weir and Cockerham’s θ-statistics, and

3. A Bayesian analog of θ.18

An example from Isotoma petraea

To make the differences in implementation and calculation clear, I’m going to use data
from 12 populations of Isotoma petraea in southwestern Australia surveyed for genotype at
GOT –1 [3] as an example throughout these discussions (Table 1).

Let’s ignore the sampling problem for a moment and calculate the F -statistics as if we
had observed the population allele frequencies without error. They’ll serve as our baseline
for comparison.

p̄ = 0.8888

Var(p) = 0.02118

Fst = 0.2143

Individual heterozygosity = (0.0000 + 0.1500 + 0.1000 + 0.0000 + 0.0000 + 0.1667 + 0.1000

+0.0909 + 0.0000 + 0.0000 + 1.0000 + 0.0000)/12

= 0.1340

Expected heterozygosity = 2(0.8888)(1− 0.8888)

= 0.1976

Fit = 1− Individual heterozygosity

Expected heterozygosity

= 1− 0.1340

0.1976

18This is, as you have probably already guessed, my personal favorite. We don’t have time to discuss it in
lecture, but if you’re interested, ask me about it. I should also tell you that Gregory Owens pointed out on
Twitter that arguments about genetic differentiation can get a little heated (https://twitter.com/Greg_
Owens/status/1582104811629346817). They may not turn into an actual fistfight, but there have been
some pretty extreme statements made.
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Genotype
Population A1A1 A1A2 A2A2 p̂

Yackeyackine Soak 29 0 0 1.0000
Gnarlbine Rock 14 3 3 0.7750

Boorabbin 15 2 3 0.8000
Bullabulling 9 0 0 1.0000
Mt. Caudan 9 0 0 1.0000

Victoria Rock 23 5 2 0.8500
Yellowdine 23 3 4 0.8167

Wargangering 29 3 1 0.9242
Wagga Rock 5 0 0 1.0000

“Iron Knob Major” 1 0 0 1.0000
Rainy Rocks 0 1 0 0.5000

“Rainy Rocks Major” 1 0 0 1.0000

Table 1: Genotype counts at the GOT − 1 locus in Isotoma petraea (from [3]).

= 0.3221

1− Fit = (1− Fis)(1− Fst)

Fis =
Fit − Fst

1− Fst

=
0.3221− 0.2143

1− 0.2143
= 0.1372

Summary

Correlation of gametes due to inbreeding within subpopulations (Fis): 0.1372
Correlation of gametes within subpopulations (Fst): 0.2143
Correlation of gametes in sample (Fit): 0.3221

Why do I refer to them as the “correlation of gametes . . .”? There are two reasons:

1. That’s the way Wright always referred to and interpreted them.

2. We can define indicator variables xijk = 1 if the ith allele in the jth individual of
population k is A1 and xijk = 0 if that allele is not A1. This may seem like a strange
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thing to do, but the Weir and Cockerham approach to F -statistics described below
uses just such an approach. If we do this, then the definitions for Fis, Fst, and Fit

follow directly.19

Notice that Fis could be negative, i.e., there could be an excess of heterozygotes within
populations (Fis < 0). Notice also that we’re implicitly assuming that the extent of departure
from Hardy-Weinberg proportions is the same in all populations. Equivalently, we can regard
Fis as the average departure from Hardy-Weinberg proportions across all populations.

Statistical expectation and unbiased estimates

So far I’ve assumed that we know the allele frequencies without error, but of course that’s
never the case unless we’ve created experimental populations. We are always taking a sample
from a population and inferring — estimating — allele frequencies from our sample. Similarly,
we are estimating FST and our estimate of FST needs to take account of the imprecision in the
allele frequency estimates on which it was based. To understand one approach to dealing with
this uncertainty I need to introduce two new concepts: statistical expectation and unbiased
estimates.

The concept of statistical expectation is actually quite an easy one. It is an arithmetic
average, just one calculated from probabilities instead of being calculated from samples. So,
for example, let P(k|p,N) be the probability that we find k A1 alleles in our sample of size
N given that the allele frequency in the population is p. Then the expected number of A1

alleles in our sample is just

E(k) =
n∑

k=0

kP(k|p,N)

= np

where n is the total number of alleles in our sample.20

Now consider the expected value of our sample estimate of the population allele frequency,
p̂ = k/n, where k now refers to the number of A1 alleles we actually found.

E(p̂) = E

(
n∑

k=1

(k/n)

)
19See [9] for details.
20P(k|p,N) =

(
N
k

)
pk(1 − p)N−k. The algebra in getting from the first line to the second is a little

complicated, but feel free to ask me about it if you’re intersted.
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=
n∑

k=1

(k/n)P (k|p,N)

= (1/n)

(
n∑

k=1

kP (k|p,N)

)
= (1/n)(np)

= p .

Because E(p̂) = p, p̂ is said to be an unbiased estimate of p.21 When an estimate is unbiased
it means that if we were to repeat the sampling experiment an infinite number of times
and to take the average of the estimates, the average of those values would be equal to the
(unknown) parameter value.

What about estimating the frequency of heterozygotes within a population? The obvious
estimator is H̃ = 2p̂(1− p̂). Well,

E(H̃) = E (2p̂(1− p̂))
= 2

(
E(p̂)− E(p̂2)

)
= TAMO

= ((n− 1)/n)2p(1− p) .

Because E(H̃) 6= 2p(1 − p), H̃ is a biased estimate of 2p(1 − p). If, however, we set Ĥ =
(n/(n− 1))H̃, however, Ĥ is an unbiased estimator of 2p(1− p).22

If you’ve ever wondered why you typically divide the sum of squared deviations about the
mean by n− 1 instead of n when estimating the variance of a sample, this is why. Dividing
by n gives you a (slightly) biased estimator.

21Notice that I’m using a hat here to refer to a statistical estimate. Remember when I told you I’d be
using hats for a couple of different purposes? Well, this is the second one.

22If you’re wondering how I got from the second equation for Ĥ to the last one, ask me about it or read
the gory details section that follows. TAMO is short for “Then a miracle occurs.” You’ll see that acronym
repeatedly this semester.
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The gory details23

Starting where we left off above:

E(H̃) = 2
(
(Ep̂)− E(p̂2)

)
= 2

(
p− E

(
(k/n)2

))
,

where k is the number of A1 alleles in our sample and n is the sample size.

E
(
(k/n)2

)
=

∑
(k/n)2P(k|p,N)

= (1/n)2
∑

k2P(k|p,N)

= (1/n)2
(
Var(k) + k̄2

)
= (1/n)2

(
np(1− p) + n2p2

)
= p(1− p)/n+ p2 .

Substituting this back into the equation above yields the following:

E(H̃) = 2
(
p−

(
p(1− p)/n+ p2

))
= 2 (p(1− p)− p(1− p)/n)

= (1− 1/n) 2p(1− p)
= ((n− 1)/n)2p(1− p) .

Corrections for sampling error

There are two sources of allele frequency difference among subpopulations in our sample: (1)
real differences in the allele frequencies among our sampled subpopulations and (2) differences
that arise because allele frequencies in our samples differ from those in the subpopulations
from which they were taken.24

23Skip this part unless you are really, really interested in how I got from the second equation to the third
equation in the last paragraph. This is more likely to confuse you than help unless you know that the
variance of a binomial sample is np(1− p) and that E(k2) = Var(p) + p2.

24There’s actually a third source of error that we’ll get to in a moment. The populations we’re sampling
from are the product of an evolutionary process, and since the populations aren’t of infinite size, drift has
played a role in determining allele frequencies in them. As a result, if we were to go back in time and re-run
the evolutionary process, we’d end up with a different set of real allele frequency differences. We’ll talk
about this more in just a moment when we get to Weir and Cockerham’s statistics.
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Nei’s Gst

Nei and Chesser [5] described one approach to accounting for sampling error. So far as I’ve
been able to determine, there aren’t any currently supported programs25 that calculate the
bias-corrected versions of Gst.

26 I calculated the results in Table 2 by hand.
The calculations are tedious, which is why you’ll want to find some way of automating

the calculations if you want to do them.27

Hi = 1− 1

N

N∑
k=1

m∑
i=1

Xkii

Hs =
ñ

ñ− 1

[
1−

m∑
i=1

¯̂x2i −
HI

2ñ

]

Ht = 1−
m∑
i=1

x̄2i +
HS

ñ
− HI

2ñN

where we have N subpopulations, ¯̂x2i =
∑N

k=1 x
2
ki/N , x̄i =

∑N
k=1 xki/N , ñ is the harmonic

mean of the population sample sizes, i.e., ñ = 1
1
N

∑N

k=1
1
nk

, Xkii is the frequency of genotype

AiAi in population k, xki is the frequency of allele Ai in population k, and nk is the sample
size from population k. Recall that

Fis = 1− Hi

Hs

Fst = 1− Hs

Ht

Fit = 1− Hi

Ht

.

Weir and Cockerham’s θ

Weir and Cockerham [10] describe the fundamental ideas behind this approach. Weir and
Hill [11] bring things up to date. Holsinger and Weir [2] provide a less technical overview.28

25Popgene estimates Gst, but I don’t think it’s been updated since 2000. FSTAT also estimates gene
diversities, but the most recent version is from 2002.

26There’s a reason for this that we’ll get to in a moment. It’s alluded to in the footnote before the last
one.

27It is also one big reason why most people use Weir and Cockerham’s θ. There’s readily available software
that calculates it for you.

28We also talk a bit more about how F -statistics can be used. If you just can’t get enough of this, I suggest
you take a look at Verity and Nichols [7]. They provide a really solid analysis of FST , GST , and some related
statistics.
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Most, if not all, packages available now that estimate FST provide estimates of θ. The most
important difference between θ and Gst and the reason why Gst has fallen into disuse is that
Gst ignores an important source of sampling error that θ incorporates.

In many applications, especially in evolutionary biology, the subpopulations included
in our sample are not an exhasutive sample of all populations. Moreover, even if we have
sampled from every population there is now, we may not have sampled from every population
there ever was. And even if we’ve sampled from every population there ever was, we know
that there are random elements in any evolutionary process. Thus, if we could run the clock
back and start it over again, the genetic composition of the populations we have might be
rather different from that of the populations we sampled. In other words, our populations
are, in many cases, best regarded as a random sample from a much larger set of populations
that could have been sampled.

Even more gory details29

Let xmn,i be an indicator variable such that xmn,i = 1 if allele m from individual n is of type i
and is 0 otherwise. Clearly, the sample frequency p̂i = 1

2N

∑2
m=1

∑N
n=1 xmn,i, and E(p̂i) = pi,

i = 1 . . . A. Assuming that alleles are sampled independently from the population

E(x2mn,i) = pi

E(xmn,ixmn′,i) = E(xmn,ixm′n′,i) = p2i + σxmn,ixm′n′,i

= p2i + pi(1− pi)θ

where σxmn,ixm′n′,i
is the intraclass covariance for the indicator variables and

θ =
σ2
pi

pi(1− pi)
(12)

is the scaled among population variance in allele frequency in the populations from which
this population was sampled. Using (12) we find after some algebra

σ2
p̂i

= pi(1− pi)θ +
pi(1− pi)(1− θ)

2N
.

29This is even worse than the last time. I include it for completeness only. I really don’t expect anyone
(unless they happen to be a statistician) to be able to understand these details. I wouldn’t recommend
spending time trying to understand this unless you really, really want to understand the mathematical
underpinnings of Weir and Cockerham’s statistics. I’ve explained the fundamental principles in the text.
This is just a lot of algebra, which admittedly entertains some of us who have a perverse fascination with
these things.
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Method Fis Fst Fit

Direct 0.1372 0.2143 0.3221
Nei 0.3092 0.2395 0.4746

Weir & Cockerham 0.5398 0.0387 0.5577

Table 2: Comparison of Wright’s F -statistics when ignoring sampling effects with Nei’s GST

and Weir and Cockerham’s θ.

Notation
Wright Weir & Cockerham
Fit F
Fis f
Fst θ

Table 3: Equivalent notations often encountered in descriptions of population genetic struc-
ture.

The hat on σ2
p̂i

indicates the sample variance of allele frequencies among popluations. A
natural estimate for θ emerges using the method of moments when an analysis of variance is
applied to indicator variables derived from samples representing more than one population.

Applying Gst and θ

If we return to the data that motivated this discussion, the results in Table 2 show what we
get from analyses of theGOT−1 data from Isotoma petraea (Table 1). But first a note on how
you’ll see statistics like this reported in the literature. It can get a little confusing, because of
the different symbols that are used. Sometimes you’ll see Fis, Fst, and Fit. Sometimes you’ll
see f , θ, and F . And it will seem as if they’re referring to similar things. That’s because
they are. They’re really just different symbols for the same thing (see Table 3). Strictly
speaking the symbols in Table 3 are the parameters, i.e., values in the population that we
try to estimate. We should put hats over any values estimated from data to indicate that
they are estimates of the parameters, not the parameters themselves. But we’re usually a
bit sloppy, and everyone knows that we’re presenting estimates, so we usually leave off the
hats.
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An example from Wright

Hierarchical analysis of variation in the frequency of the Standard chromosome arrangement
of Drosophila pseudoobscura in the western United States (data from [1], analysis from [13]).
Wright uses his rather peculiar method of accounting for sampling error. I haven’t gone back
to the original data and used a more modern method of analysis.30

66 populations (demes) studied. Demes are grouped into eight regions. The regions are
grouped into four primary subdivisions.

Results

Correlation of gametes within individuals relative to regions (FIR): 0.0444
Correlation of gametes within regions relative to subdivisions (FRS): 0.0373
Correlation of gametes within subdivisions relative to total (FST ): 0.1478
Correlation of gametes in sample (FIT ): 0.2160

1− FIT = (1− FIR)(1− FRS)(1− FST )

Interpretation

There is relatively little inbreeding within regions (FIR = 0.04) and relatively little genetic
differentiation among regions within subdivisions (FRS = 0.04). There is, however, substan-
tial genetic differentiation among the subdivisions (FST = 0.15).

Thus, an explanation for the chromosomal diversity that predicted great local differ-
entiation and little or no differentiation at a large scale would be inconsistent with these
observations.

Reich’s f-statistics

No, that heading isn’t a typo. I’ve described Wright’s F -statistics to you, but there are
some other f -statistics you may encounter and should know about.31 The f -statistics I’ll
describe briefly now were introduced by Reich and colleagues [6] in the context of estimating

30Sounds like it might be a good project, doesn’t it? We’ll see.
31Remember when I told you that population geneticists commonly use the same symbol or letter to refer

to different things. This is another example of that. At least in this case one uses an uppercase F and the
other uses a lowercase f .
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the populaton history and admixture of human populations on the Indian subcontinent.32 If
you read the paper, you won’t find the definitions in the main text. They’re in Supplement 1.

Reich’s f -statistics are defined only for markers that have two alleles, like SNP loci. I’m
going to use notation that’s a bit different from that in [6], but it will match more closely
what we’ve been using here, and it should be easier to follow. Let mk be the number of 0
alleles in the sample from population k and let mk be the number of 1 alleles in the sample
from population k. pk = nk/(nk + mk) is both an unbiased and a maximum-llikelihood
estimate of pk. Let’s define

f4(1, 2, 3, 4) = (p1 − p2)(p3 − p4) .

If you stare at that a bit,33 you may recognize that f4 looks like a correlation coefficient. In
fact, as Reich et al. point out, if the true population phylogeny looks like the one in Figure 1,
then the expected value of f4 is 0. Looking at the figure you can see that populations 1 and
2 have a common history that is independent of populations 3 and 4 (and vice versa). As
a result, if you calculate f4 statistics from a large number of loci, you can see whether the
relationship among four populations is consistent with the phylogeny in Figure 1.

We can also define

f3(1, 2, 3) = (p1 − p2)(p1 − p3)−
p1(1− p1)

n1

,

where n1 is the sample size in population 1. The extra term, p1(1−p1)
n1

makes f3 an unbiased
estimator. f3 measures how much common history p2 and p3 share that is independent of
p1. If the true population phylogeny looks like the one in Figure 2, then

E (f3(1, 2, 3)) > E (f3(2, 1, 3))

E (f3(1, 2, 3)) > E (f3(3, 1, 2)) .

Finally we can define

f2(1, 2) = (p1 − p2)2 −
p1(1− p1)

n1

− p1(1− p1)
n1

,

32The software that makes f -statistics useful in admixture analysis, AdmixTools (https://github.com/
DReichLab/AdmixTools), requires that you have a C compiler, that you know how to use make to compile
executables from C source code, and that you know how to install the libraries on which AdmixTools depends.
Because of all of those requirements, we won’t be using AdmixTools in this course. If you have data where
it might be useful, I encourage you to explore it and to explore the R package admixr, which provides a
convenient interface for it.

33And if you remember how a correlation coefficient is defined.
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pop1 pop2 pop3 pop4

Figure 1: Hypothetical phylogeny for four populations. If you’re wondering why it’s upside
down, I warned you. Population geneticists look at the world backward from other people.
It’s conventional to draw phylogenies this way in population genetics, probably because,
being geneticists, population geneticists tend to think of them as pedigrees.

which gives an unbiased estimate of squared allele frequency differences between populations,
analogous to pairwise F -statistics.
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