
Analyzing the genetic structure of
populations: a Bayesian approach

Introduction

Our review of Nei’s Gst and Weir and Cockerham’s θ illustrated two important principles:

1. It’s essential to distinguish parameters from estimates. Parameters are the things we’re
really interested in, but since we always have to make inferences about the things we’re
really interested in from limited data, we have to rely on estimates of those parameters.

2. This means that we have to identify the possible sources of sampling error in our
estimates and to find ways of accounting for them. In the particular case of Wright’s F -
statistics we saw that, there are two sources of sampling error: the error associated with
sampling only some individuals from a larger universe of individuals within populations
(statistical sampling) and the error associated with sampling only some populations
from a larger universe of populations (genetic sampling).1

It shouldn’t come as any surprise that there is a Bayesian way to do what I’ve just described.
As I hope to convince you, there are some real advantages associated with doing so.

The Bayesian model

I’m not going to provide all of the gory details on the Bayesian model. In fact, I’m only
going to describe two pieces of the model.2 First, a little notation:

n11,i = # of A1A1 genotypes

n12,i = # of A1A2 genotypes

n22,i = # of A2A2 genotypes

1The terms “statistical sampling” and “genetic sampling” are due to Weir [4].
2The good news is that to do the Bayesian analyses you don’t have to write any code. All you have to

do is download an R package in a slightly strange way, but we’ll get to that.
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i = population index

I = number of populations

These are the data we have to work with. The corresponding genotype frequencies are

x11,i = p2i + fpi(1− pi)
x12,i = 2pi(1− pi)(1− f)

x22,i = (1− pi)2 + fpi(1− pi)

So we can express the likelihood of our sample as a product of multinomial probabilities

P (n|p, f) ∝
I∏

i=1

x
n11,i

11,i x
n12,i

12,i x
n22,i

22,i .

Notice that I am assuming here that we have the same f in every population. It’s easy
enough to relax that assumption, but we won’t worry about it for now.

The next step is to describe how allele frequencies are distributed among populations. I’ll
leave out the details, but broadly speaking all we do is to define a probability distribution

P (p|p̄, θ) ,

where p̄ is the average allele frequency across populations, and θ is FST .3 To complete the
Bayesian model, all we need are some appropriate priors. We’ll discuss them a little later,
but we can now write down the complete model as

P (f, θ|p̄, θ, f) ∝ P (n|p, f)P (p|p̄, θ)P (p̄)P (θ)P (f) .

Using Hickory to analyze F -statistics

As I said earlier, the good news is that you don’t have to write any code to run an
analysis of F -statistics using a Bayesian approach. All you have to do is to down-
load and install the package Hickory in R. Doing this isn’t quite as simple as typing
install.packages("Hickory") in R, but it’s not too much worse.4

install.packages("devtools")

install.packages(c("bayesplot", "rstan", "tidyverse"))

devtools::install_github("kholsinger/Hickory", build_vignettes = TRUE)

3I call it θ rather than FST , because this parameter is conceptually equivalent to Weir and Cockerham’s
θ even though I use a different method to estimate it.

4One of these days I’ll get around to cleaning Hickory up a bit more and submit it to CRAN. Then
installing it will be as simple as install.packages("Hickory")
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Figure 1: Selected rows of a isotoma.csv with data from Isotoma petraea [1].

Getting data into Hickory

Now you’re ready to read in the data. In this case, we’re going to start with the
Isotomoa petrea example. Download the data from http://darwin.eeb.uconn.edu/

eeb348-resources/isotoma.csv, open it up in your favorite spreadsheet editor, and you
should see something similar to Figure 1.

The first row is a header row that describes the data in the columns. The first column
has the heading pop, which indicates that the elements in the column refer to the population
from which an individual was collected. The second column has the heading GOT-1, which
indicates that this column contains the genotype of an individual at the GOT-1 locus. Each
row after the first is the genotype of one individual. I used 2 for A1A1, 1 for A1A2, and 0
for A2A2. I could have swapped the numbers for the two homozygotes, but the heterozygote
must be given the genotype 1.

Now load Hickory and the tidyverse and take a quick look at a more complicated data
set before we continue with the Isotoma petraea example.

library("Hickory")

library("tidyverse")

dat <- read_csv(system.file("extdata", "protea_repens.csv", package = "Hickory"))
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Figure 2: Selected rows of a a data set from Protea repens that is distributed with Hickory [2].

view(dat)

Here you’ll see the pop column again and columns for the genotype of individuals at 20
different loci (Figure 2). For now just notice how every individual has been genotyped at a
number of loci, and that there are missing data (denoted by ’.’) for some combinations of
individuals and loci.

Now that you understand something about the format of the data that Hickory needs,
let’s load it into R for further analysis.

genos <- read_marker_data("isotoma.csv")

Running the analysis

Now that the data are loaded, running the analysis is very straightforward.

fit <- analyze_codominant(genos)

The results are pretty easy to interpret, too.
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Inference for Stan model: analyze_codominant.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

f 0.344 0.002 0.101 0.147 0.276 0.345 0.414 0.538 3539 1.000

theta 0.075 0.001 0.046 0.017 0.042 0.065 0.096 0.197 1223 1.002

lp__ -121.464 0.150 4.035 -130.283 -124.022 -121.095 -118.549 -114.516 727 1.003

Samples were drawn using NUTS(diag_e) at Sat Jul 3 16:07:48 2021.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The column labeled mean is the posterior mean for the parameter listed in the first
column.5 The column labeled se mean is the standard error of the mean. It’s a measure of
how accurate the estimate of the posterior mean is, and we want it to be very small relative
to the estimate of the posterior mean. The column labeled sd is the standard deviation of
the posterior mean. It’s a measure of our uncertainty about the mean. We expect about 95%
of the posterior probability to lie within 2 standard deviations of the mean. If we compare
the 2.5% and 97.5% quantiles,6 they are very close to what we expect.

In short, there appears to be a reasonable amount of inbreeding within populations
(f = 0.344) and a small to moderate amount of among population differentiation (θ = 0.075).
In contrast to the Weir and Cockerham method, we also have estimates of uncertainty
associated with both f and θ.7 Since you’ve probably forgotten what the other estimates
look like, Table 1 compares all of the approaches we’ve considered.

The logic behind Hickory matches the logic behind Weir & Cockerham. With moderate
to large sample sizes, the point estimates are reasonably close. They’re somewhat different
here because there is only one locus in the sample and because the sample sizes in some of the
populations are very small. Notice, however, that the Hickory and the Weir & Cockerham
estimates are similar in one very important respect. The estimate of FST is much smaller
in them than in Nei’s method or the direct method because they take account of genetic
sampling, not just statistical sampling.

5Don’t worry about lp for the time being.
6Corresponding to 95% of the posterior probabiity.
7It’s not too difficult to get estimates of uncertainty usins the Weir and Cockerham approach, but it takes

some additional work.
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Method Fis Fst

Direct 0.137 0.214
Nei 0.309 0.240

Weir & Cockerham 0.540 0.039
Hickory 0.344 0.075

Table 1: Comparison of different approaches for estimating population structure from genetic
data.

Thinking about priors

When I introduced the Bayesian model I reminded you that we need to specify priors to
complete it, so how did I get away without specifying any priors in the analysis we just
completed? Because Hickory picks priors by default when you don’t specify them. It
picks priors for f and θ such that there’s a 95% chance that they lie between 0.01 and 0.2.
That makes sense for many organisms, since many of them are outbreeding and have low
to moderate amounts of population differentiation. If we have a fair amount of data, that
choice won’t make much difference. What about here?

Instead of starting our analysis thinking that we have a reasonably good idea of what f
and θ ought to be, let’s suppose we don’t have much of an idea at all. In particular, let’s
imagine that all we’re willing to say is that there’s a 95% chance that f and θ lie between
0.1 and 0.9. How do we incorporate that into the analysis?

fit <- analyze_codominant(genos, prior_f = list(lower = 0.1, upper = 0.9),

prior_theta = list(lower = 0.1, upper = 0.9))

As you can see, the results are quite different from those we got before.

Inference for Stan model: analyze_codominant.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

f 0.523 0.001 0.094 0.331 0.460 0.525 0.590 0.693 4027 0.999

theta 0.263 0.005 0.131 0.068 0.163 0.243 0.342 0.571 724 1.005

lp__ -122.391 0.184 4.255 -131.796 -125.070 -121.939 -119.311 -115.408 533 1.007

Samples were drawn using NUTS(diag_e) at Sat Jul 3 16:43:51 2021.

For each parameter, n_eff is a crude measure of effective sample size,
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and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The posterior mean of f is now 0.523 rather than 0.344, and the posterior mean of θ
is now 0.263 rather than 0.075. If you’re following along, you’re probably asking yourself
“Which of those estimates should I believe?” My advice is that you shouldn’t believe either
of them very much. Remember what a Bayesian model looks like.

P(φ|x) =
P(x|φ)P(φ)

P(x)

We get the posterior mean from the posterior distribution, P(φ|x). If the posterior mean
changes substantially based on different choices for the prior, P(φ), it means that we don’t
have enough data for the likelihood, P(x|φ) to dominate the result. In simpler terms, if
different choices for the prior lead to markedly different conclusions, our confidence in those
conclusions depends heavily on our prior beliefs, not just the data we’ve collected. Unless
we have a lot of confidence in our prior beliefs, we shouldn’t have much confidence in the
conclusions.

One of the nice things about a Bayesian approach is that it gives us a straightforward
way to assess how much to rely on inferences from the data we’ve collected. If different
priors have a large influence on the posterior, as they do here, it tells us that the data we’ve
collected don’t have much information about the parameters we’re interested in. If different
priors don’t have a large influence, then the data do have a fair amount of information about
the parameters.8

There’s a general lesson here: Think carefully about the prior distribution on the param-
eters in any Bayesian model you use, and consider exploring at least a couple of different
choices of priors to see if they have a large influence on your conclusions. In addition, pay
attention to the credible intervals. In both sets of analyses you’ve just seen, the credible
intervals are very wide. That in itself says that the data aren’t giving you a very clear idea
of what the parameter is.

Assessing evidence for inbreeding and population differentiation

You’ve already seen that Hickory gives you estimates of the credible intervals for f and θ,
but if you’re interested in seeing whether there is evidence for inbreeding within populations
or for genetic differentiation among populations, you can’t just look to see whether the

8If it seems as if I’m repeating myself, I probably am, but I think this is a really immportant point that
bears repeating.
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credible intervals overlap 0. Why? because f and θ are defined to lie between 0 and 1 in
Hickory so they can’t overlap 0.9 In some data sets the posterior mean for either or both
may be substantially larger than 0, and the lower bound of the credible interval may also be
substantially larger than 0. In such cases, you’d be pretty safe saying that you have evidence
for inbreeding or geographical differentiation, but what if you have a situation like what you
get from using the Protea repens data set that is distributed with Hickory.

genos <- read_marker_data(system.file("extdata", "protea_repens.csv", package = "Hickory"))

fit <- analyze_codominant(genos)

Inference for Stan model: analyze_codominant.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

f 0.005 0.000 0.002 0.002 0.003 0.005 0.006 0.010 5169 0.999

theta 0.081 0.000 0.008 0.066 0.075 0.081 0.086 0.097 1599 1.001

lp__ -6242.725 0.538 17.416 -6276.812 -6254.305 -6242.781 -6230.561 -6209.327 1048 1.005

Samples were drawn using NUTS(diag_e) at Sun Jul 4 12:52:05 2021.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The posterior means and credible intervals in these data are relatively insensitive to our
choice of priors.10 The posterior mean for θ is only 0.081, but the lower bound of the 95%
credible interval is 0.066 and the credible interval is quite small, which gives us reasonably
strong evidence that θ > 0, i.e., that there is genetic differentiation among populations. But
what about inbreeding within populations? The posterior mean of f is only 0.005, and the
lower bound of the 95% credible interval is barely greater than 0, i.e., 0.002. That doesn’t
seem like very good evidence either way, but can we say something more?11

We could simply do Hardy-Weinberg tests at every locus in every population, but that
could get pretty tedious. If we did that, we’d also run into problemms with multiple tests,

9We noted a couple of lectures ago that f can be negative when it’s understood as a measure of departure
from Hardy-Weinber, but for computational reasons, Hickory restricts it to [0, 1]. If you’re interested in the
gory details of why, feel free to ask me.

10Don’t take my word for it. Run the analysis yourself with the second set of priors we used above or with
another set of priors that strikes your fancy and compare the results.

11Would I be asking this question if the answer were “No”?
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which inconvenient to deal with. We’ll take a different approach. Namely, we’ll compare
the model we just fit with one that assumes there is no inbreeding within populations, i.e.,
f = 0. The criterion we’ll use to compare the models is something known as the expected log
predictive density [3]. That’s a mouthful, and the mathematics is reasonably complicated,
but it’s easy enough to interpret the results without understanding all of those details.

First, we run the model in which we assume f = 0 and store the result in a different
object.

fit_f0 <- analyze_codominant(genos, f_zero = TRUE)

Inference for Stan model: analyze_codominant.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

f 0.000 NaN 0.000 0.000 0.000 0.000 0.000 0.000 NaN NaN

theta 0.081 0.000 0.008 0.067 0.076 0.080 0.086 0.097 1934 1.000

lp__ -6234.006 0.518 16.882 -6267.340 -6245.573 -6233.842 -6222.445 -6202.017 1060 1.001

Samples were drawn using NUTS(diag_e) at Sun Jul 4 13:21:39 2021.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Notice that the estimate for f is 0, as expected. Now we can commpare the two models
using loo().12

loo_free <- loo(fit)

loo_f0 <- loo(f0)

compare(loo_free, loo_f0)

You’ll see some warning messages when you run loo() with these data. In an ideal world,
we’d do things a bit differently and get rid of them, but in this case, we don’t need to worry
about them. Let’s focus on the table that was printed.

elpd_diff se_diff

model2 0.0 0.0

model1 -1.8 3.4

12I call the first object loo free because in that model f was free to vary.
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Model A1A1 A1A2 A2A2

f = 0 0.25 0.50 0.25
f = 0.005 0.25125 0.4975 0.25125
f = 0.010 0.2525 0.495 0.2525

Table 2: Comparison of genotype frequencies assuming p = 0.5 with f = 0 and f as estimated
(mean and upper bound of the 95% credible interval) from the Protea repens data distributed
with Hickory.

The column labeled elpd diff is the difference in expected log predictive density between
the model with the highest elpd and the model on the line in which the entry appears. The
column labeled se diff is the standard error of that difference. model 2 refers to the second
model named in the call to compare(), i.e., the f = 0 model (loo f0), and model 1 refers
to the first model named in the call to compare(), i.e., the f “free” model. What all of this
means is that

• Model 2, the f = 0 model, is more strongly supported than Model 2, the model in
which we estimated f , but

• The difference between the two models, -1.8, is substantially less than twice the stan-
dard error of the difference (3.4), meaning that we don’t have good evidence that one
model is better than the other.

You may find it dissatisfying that we can’t distinguish between these two models and
that we’re left saying that we don’t know whether we have evidence for inbreeding within
populations or not, but remember, our estimate of f is only 0.005. Table 2 shows what
that means for expected genotype frequencies if p = 0.5. As you can see, the difference
in genotype frequencies is extremely small. It’s hard to believe that there would be any
biologically meaningful difference between any of the scenarios that seem compatible with
the data.

Extending the model

It is relatively straightforward to extend the basic model above to account for the possibility
that the amount of differentiation at some loci is much greater (or much smaller) than
it is as most loci. Similarly, it is relatively straightfoward to extend the model to allow
some populations to be much more similar to (or much more different from) the average
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population allele frequencies than others. All we need to do is to allow θ to reflect locus-
and population-specific effects.

θi = locus-specific θ

θk = population-specific θ

θik = population- and locus-specific θ

= (θi + θk)/2 .

You can read more about estimating locus- and population-specific effects in the documen-
tation for Hickory if you’re interested.
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