Analyzing the genetic structure of populations: individual assignment

Introduction

About 15 years ago a different approach to the analysis of genetic structure began to emerged: analysis of individual assignment. Although the implementation details get a little hairy, the basic idea is fairly simple. Suppose we have genetic data on a series of individuals. Label the data we have for each individual x_i. Suppose that all individuals belong to one of K populations and let the genotype frequencies in population k be represented by γ_k. Then the likelihood that individual i comes from population k is just

$$P(i|k) = \frac{P(x_i|\gamma_k)}{\sum_k P(x_i|\gamma_k)}.$$

So if we can specify prior probabilities for γ_k, we can use Bayesian methods to estimate the posterior probability that individual i belongs to population k, and we can associate that assignment with some measure of its reliability.\(^1\)

Applying assignment to understand invasions

We’ll use Structure to assess whether cultivated genotypes of *Berberis thunbergii* contribute to ongoing invasions in Connecticut and Massachusetts [1]. The first problem is to determine what K to use, because K doesn’t necessarily have to equal the number of populations we sample from. Some populations may not be distinct from one another. There are a couple of ways to estimate K. The most straightforward is to run the analysis for a range of plausible values, repeat it 10-20 times for each value, calculate the mean “log probability of the data” for each value of K, and pick the value of K that is the biggest, i.e., the least negative (Table 1). For the barberry data, $K = 3$ is the obvious choice.

Having determined that the data support $K = 3$, the results of the analysis are displayed in Figure 1. Each vertical bar corresponds to an individual in the sample, and the proportion

\(^1\)You can find details in [4].

© 2004-2015 Kent E. Holsinger
Table 1: Mean log probability of the data for $K = 2, 3, 4, 5$ in the $Berberis thunbergii$ data (adapted from [1]).

<table>
<thead>
<tr>
<th>K</th>
<th>Mean L(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2553.2</td>
</tr>
<tr>
<td>3</td>
<td>-2331.9</td>
</tr>
<tr>
<td>4</td>
<td>-2402.9</td>
</tr>
<tr>
<td>5</td>
<td>-2476.3</td>
</tr>
</tbody>
</table>

of each bar that is of a particular color tells us the posterior probability that the individual belongs to the cluster with that color.

Figure 1 may not look terribly informative, but actually it is. Look at the labels beneath the figure. You’ll see that with the exception of individual 17 from Beaver Brook Park, all the individuals that are solid blue are members of the cultivated $Berberis thunbergii$ var. atropurpurea. The solid red bar corresponds to $Berberis thunbergii$ 'Atropurpurea', another modern cultivar. You’ll notice that individuals 1, 2, 18, and 19 from Beaver Brook Park and individual 1 from Bluff Point State Park fall into the same genotypic cluster as this cultivar. $Berberis \times ottawensis$ is a hybrid cultivar whose parents are $Berberis thunbergii$ and $Berberis vulgaris$, so it makes sense that individuals of this cultivar would be half blue and half red. The solid green bars are feral individuals from long-established populations. Notice that the cultivars are distinct from all but a few of the individuals in the long-established feral populations, suggesting that contemporary cultivars are doing relatively little to maintain the invasion in areas where it is already established.

Genetic diversity in human populations

A much more interesting application of $Structure$ appeared a little over a decade ago. The Human Genome Diversity Cell Line Panel (HGDP-CEPH) consisted at the time of data from 1056 individuals in 52 geographic populations. Each individual was genotyped at 377 autosomal loci. If those populations are grouped into 5 broad geographical regions (Africa, Europe, the Middle East, and Central/South Asia), East Asia, Oceania, and the Americas), we find that about 93% of genetic variation is found within local populations and only about 4% is a result of allele frequency differences between regions [5]. You might wonder why Europe, the Middle East, and Central/South Asia were grouped together for that analysis. The reason becomes clearer when you look at a $Structure$ analysis of the same data (Figure 2).
Figure 1: Analysis of AFLP data from *Berberis thunbergii* [1].

Figure 2: *Structure* analysis of microsatellite diversity in the Human Genome Diversity Cell Line Panel (from [5]).
A non-Bayesian look at individual-based analysis of genetic structure

Structure has a lot of nice features, but you’ll discover a couple of things about it if you begin to use it seriously: (1) It often isn’t obvious what the “right” K is.\(^2\) (2) It requires a lot of computational resources, especially with datasets that include a few thousand SNPs, as is becoming increasingly common. An alternative is to use principal component analysis directly on genotypes. There are technical details associated with estimating the principal components and interpreting them that we won’t discuss,\(^3\), but the results can be pretty striking. Figure 3 shows the results of a PCA on data derived from 3192 Europeans at 500,568 SNP loci. The correspondence between the position of individuals in PCA space and geographical space is remarkable.

References

\(^2\)In fact, it’s not clear that there is such a thing as the “right” K. If you’re interested in hearing more about that, feel free to ask.

\(^3\)See [3] for details
Figure 3: Principal components analysis of genetic diversity in Europe corresponds with geography (from [2]). Panel b is a close-up view of the area around Switzerland (CH).
Creative Commons License

These notes are licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.