ANALYZING THE GENETIC STRUCTURE OF
POPULATIONS: INDIVIDUAL ASSIGNMENT

Introduction

Although F-statistics are widely used and very informative, they suffer from one fundamen-
tal limitation: We have to know what the populations are before we can estimate them.!
They are based on a conceptual model in which organisms occur in discrete populations,
populations that are both (1) well mixed within themselves (so that we can regard our sam-
ple of individuals as a random sample from within each population) and (2) clearly distinct
from others. What if we want to use the genetic data itself to help us figure out what the
populations actually are? Can we do that??

A little over 20 years ago a different approach to the analysis of genetic structure began
to emerge: analysis of individual assignment. Although the implementation details get a
little hairy,® the basic idea is fairly simple. I'll give an outline of the math in a moment, but
let’s do this in words first. Suppose we have genetic data on a series of individuals at several
to many (or very many) loci. If two individuals are part of the same population, we expect
them to be more similar to one another than they are to individuals in other populations.
So if we “cluster” individuals that are “genetically similar” to one another, those clusters
should correspond to populations. Rather than pre-defining the populations, we will have
allowed the data to tell us what the populations are. We haven’t even required a priori that
individuals be grouped according to their geographic proximity. Instead, we can examine
the clusters we find and see if they make any sense geographically.

Now for an outline of the math. Label the data we have for each individual x;. Suppose
that all individuals belong to one of K populations® and let the genotype frequencies in pop-

!To be a little more precise (and more than a little pedantic), we have to assume that the sample locations
we decide to treat as populations are discrete, well-mixed populations that are distinct from others.

2Would I be asking this question if the answer were “No?”

30K, to be fair. They get very hairy.

4’'m playing fast and loose with words here. The data haven’t actually told us what the populations are.
They’ve told us what clusters are found in the data.

5Remember the peculiar thing I mentioned about population geneticists earlier? We like to imagine we
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ulation k£ be represented by 7x. Then the likelihood that individual ¢ comes from population

k is just

P (@[ k)
>k P(@i|ne)
So if we can specify prior probabilities for v, we can use Bayesian methods to estimate the
posterior probability that individual ¢ belongs to population k£, and we can associate that
assignment with some measure of its reliability.® Remember, though, that we’ve arrived at
the assignment by assuming that there are K populations and that the genotype frequencies
are in Hardy-Weinberg in all of those populations.” Since we don’t know K, we have to find
a way of estimating it. Different choices of K may lead to different patterns of individual
assignment, which complicates our interpretation of the results.® We’ll discuss both of these
challenges in a simple, but real, data set to illustrate the principles.

P(i|k) =

Applying assignment to understand invasions

To see a simple example of how Structure can be used, we’ll use it to assess whether culti-
vated genotypes of Japanese barberry, Berberis thunbergii, contribute to ongoing invasions
in Connecticut and Massachusetts [3]. The first problem is to determine what K to use, be-
cause K doesn’t necessarily have to equal the number of populations we sample from. Some
populations may not be distinct from one another. There are a couple of ways to estimate
K. The most straightforward is to run the analysis for a range of plausible values, repeat it
10-20 times for each value, calculate the mean “log probability of the data” for each value
of K, and pick the value of K that is the biggest, i.e., the least negative (Table 1). For the

know something even when we don’t. In this case, I'm imagining we know that there are K populations even
though we don’t. If we knew K, we’d probably already know which individual belonged in which population.
We’ll get to the problem of determining what K is later.

6You can find details in [8]. If you think about that equation a bit, you can begin to see why the details
get very hairy. First, we’re trying to get the data to tell us what the populations are, so we don’t even know
how many populations there are. Then we have to find a way of estimating allele frequencies (and genotype
frequencies) in populations when we don’t even know which populations individuals in our sample belong in.
Estimating the genotype frequencies is straightforward, because we assume the genotype frequencies at every
locus are in Hardy-Weinberg. Think about that for a bit. It means we really shouldn’t be using Structure
if we think that populations are inbred.

"Did you read the last footnote?

8This is an example of the “no free lunch” principle. You don’t get something for nothing. Here we
gained the ability to have the data tell us what the populations are, but we made interpreting the results
more difficult.



K Mean L(K)
2 -2553.2

3 -2331.9
4
b}

-2402.9
-2476.3

Table 1: Mean log probability of the data for K = 2,3,4,5 in the Berberis thunbergii
data (adapted from [3]).

barberry data, K = 3 is the obvious choice.”

Having determined that the data support K = 3, the results of the analysis are displayed
in Figure 1. Each vertical bar corresponds to an individual in the sample, and the proportion
of each bar that is of a particular color tells us the posterior probability that the individual
belongs to the cluster with that color.

Figure 1 may not look terribly informative, but actually it is. Look at the labels beneath
the figure. You'll see that with the exception of individual 17 from Beaver Brook Park, all the
of the individuals that are solid blue are members of the cultivated Berberis thunbergii var.
atropurpurea. The solid red bar corresponds to Berberis vulgaris *Atropurpurea’, a different
modern cultivar.!® You’ll notice that individuals 1, 2, 18, and 19 from Beaver Brook Park and
individual 1 from Bluff Point State Park fall into the same genotypic cluster as this cultivar.
Berberis X ottawensis is a hybrid cultivar whose parents are Berberis thunbergii and Berberis
vulgaris, so it makes sense that individuals of this cultivar would be half blue and half red.
The solid green bars are feral individuals from long-established populations. Notice that
the cultivars are distinct from all but a few of the individuals in the long-established feral
populations, suggesting that contemporary cultivars are doing relatively little to maintain
the invasion in areas where it is already established.

9As part of her dissertation, Nora Mitchell used Structure to study a hybrid zone between two species
of Protea [5]. Nora was interested in determining the extent to which individuals reflected ancestry from one
of the two species involved. She set K = 2 to separate individuals as cleanly into two categories as possible
and used the individual assignment score as an index of hybridity. There wasn’t any reason to attempt to
infer K from the data.

10T find it very confusing that Berberis thunbergii var. atropurpurea and Berberis vulgaris *Atropurpurea’
both have “atropurpurea” associated with their names, but that’s the way life is.
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Figure 1: Analysis of AFLP data from Berberis thunbergii [3].

Genetic diversity in human populations

A much more interesting application of Structure appeared a shortly after Structure was
introduced. The Human Genome Diversity Cell Line Panel (HGDP-CEPH) consisted at
the time of data from 1056 individuals in 52 geographic populations. Each individual was
genotyped at 377 autosomal loci. If those populations are grouped into 5 broad geographical
regions (Africa, [Europe, the Middle East, and Central /South Asia], East Asia, Oceania, and
the Americas), we find that about 93% of genetic variation is found within local populations
and only about 4% is a result of allele frequency differences between regions [9]. You might
wonder why Europe, the Middle East, and Central/South Asia were grouped together for
that analysis. The reason becomes clearer when you look at a Structure analysis of the
data (Figure 2).
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Figure 2: Structure analysis of microsatellite diversity in the Human Genome Diversity
Cell Line Panel (from [9]).

A non-Bayesian look at individual-based analysis of genetic struc-
ture

Structure has a lot of nice features, but you’ll discover a couple of things about it if you
begin to use it seriously: (1) It often isn’t obvious what the “right” K is.!! (2) It requires a
lot of computational resources, especially with datasets that include a few thousand SNPs,
as is becoming increasingly common. An alternative is to use principal component analysis
directly on genotypes. There are technical details associated with estimating the principal
components and interpreting them that we won’t discuss,'?, but the results can be pretty
striking. Figure 3 shows the results of a PCA on data derived from 3192 Europeans at
500,568 SNP loci. The correspondence between the position of individuals in PCA space
and geographical space is remarkable.

Other approaches

Jombart et al. [2] describe a related method known as discriminant analysis of principal
components. They also provide an R package, dapc, that implements the method. I prefer
Structure because its approach to individual assignment is based directly on population

1Tn fact, it’s not clear that there is such a thing as the “right” K. If you're interested in hearing more
about that. Feel free to ask.
12Gee [7] for details
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Figure 3: Principal components analysis of genetic diversity in Europe corresponds with
geography (from [6]). Panel b is a close-up view of the area around Switzerland (CH).



genetic principles, and since computers are getting so fast (especially when you have a
computational cluster available) that I worry less about how long it takes to run an analysis
on large datasets.!> That being said, Gopalan et al. [1] released teraStructure about five
years ago, which can analyze data sets consisting of 10,000 individuals scored at a million
SNPs in less than 10 hours. I haven'’t tried it myself, because I haven’t had a large data set
to try it on, but you should keep it in mind if you collect SNP data on a large number of
loci. Here are a couple more alternatives to consider that I haven’t investigated yet:

e sNMF estimates individual admixture coefficients. It is reportedly 10-30 faster than the
likelihood based ADMIXTURE, which is itself faster than Structure. sNMF is part of the
R package LEA.

e Meisner and Albrecthsen [4] present both a principal components method and an ad-
mixture method that accounts for sequencing errors inherent in low-coverage next
generation DNA sequencing data.
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