
Genetic Drift

Introduction

So far in this course we’ve talked about changes in genotype and allele frequencies as if
they were completely deterministic. Given the current allele frequencies and viabilities, for
example, we wrote down an equation describing how they will change from one generation
to the next:

p′ =
p2w11 + pqw12

w̄
.

Notice that in writing this equation, we’re claiming that we can predict the allele frequency
in the next generation without error. But suppose the population is small, say 10 diploid
individuals, and our prediction is that p′ = 0.5. Then just as we wouldn’t be surprised if
we flipped a coin 20 times and got 12 heads, we shouldn’t be surprised if we found that
p′ = 0.6. The difference between what we expect (p′ = 0.5) and what we observe (p′ = 0.6)
can be chalked up to statistical sampling error. What’s different is that in this case, it’s the
biological process that’s producing the sampling error, not us. The biological sampling error
is the cause of (or just another name for) genetic drift — the tendency for allele frequencies
to change from one generation to the next in a finite population even if there is no selection.

A simple example

To understand in more detail what happens when there is genetic drift, let’s consider the
simplest possible example: a haploid population consisting of 2 individuals.1 Suppose that
we are studying a locus with only two alleles in this population A1 and A2. This implies that
p = q = 0.5, but we’ll ignore that numerical fact for now and simply label the frequency of
the A1 allele as p and the frequency of the A2 allele as q.

We imagine the following scenario:

1Notice that once we start talking about genetic drift, we have to specify the size of the population. As
we’ll see, that’s because the properties of drift depend on how big the population is. We’ll also see that the
size of the population isn’t simply the number of individuals we can count.
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• Each individual in the population produces a very large number of haploid gametes
that develop directly into adult offspring.

• The allele in each offspring is an identical copy of the allele in its parent, i.e., A1 begets
A1 and A2 begets A2. In other words, there’s no mutation.

• The next generation is constructed by picking two offspring at random from the very
large number of offspring produced by these two individuals. In other words, we are
dealing with a closed population. All of the offspring produced have parents within
this population.

Then it’s not too hard to see that

Probability that both offspring are A1 = p2

Probability that one offspring is A1 and one is A2 = 2pq

Probability that both offspring are A2 = q2

Of course p′ = 1 if both offspring sampled are A1, p
′ = 1/2 if one is A1 and one is A2, and

p′ = 0 if both are A2, so that set of equations is equivalent to this one:

P (p′ = 1) = p2 (1)

P (p′ = 1/2) = 2pq (2)

P (p′ = 0) = q2 (3)

In other words, we can no longer predict with certainty what allele frequencies in the next
generation will be. We can only assign probabilities to each of the three possible outcomes.
Of course, in a larger population the amount of uncertainty about the allele frequencies
will be smaller,2 but there will be some uncertainty associated with the predicted allele
frequencies unless the population is infinite.

The probability of ending up in any of the three possible states obviously depends on
the current allele frequency. In probability theory we express this dependence by writing
equations (1)–(3) as conditional probabilities:

P (p1 = 1|p0) = p20 (4)

P (p1 = 1/2|p0) = 2p0q0 (5)

P (p1 = 0|p0) = q20 (6)

2More about that later.
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We read that first equation as “the probability that the allele frequency in generation 1 (p1)
is 1 given the allele frequency in generation 0 (p0).” I’ve introduced the subscripts so that
we can distinguish among various generations in the process. Why? Because if we can write
equations (4)–(6), we can also write the following equations:3

P (p2 = 1|p1) = p21
P (p2 = 1/2|p1) = 2p1q1

P (p2 = 0|p1) = q21

Now if we stare at those a little while, we4 begin to see some interesting possibilities. Namely,

P (p2 = 1|p0) = P (p2 = 1|p1 = 1)P (p1 = 1|p0) + P (p2 = 1|p1 = 1/2)P (p1 = 1/2|p0)
= (1)(p20) + (1/4)(2p0q0)

= p20 + (1/2)p0q0

P (p2 = 1/2|p0) = P (p2 = 1/2|p1 = 1/2)P (p1 = 1/2|p0)
= (1/2)(2p0q0)

= p0q0

P (p2 = 0|p0) = P (p2 = 0|p1 = 0)P (p1 = 0|p0) + P (p2 = 0|p1 = 1/2)P (p1 = 1/2|p0)
= (1)(q20) + (1/4)(2p0q0)

= q20 + (1/2)p0q0

It takes more algebra than I care to show,5 but these equations can be extended to an
arbitrary number of generations.

P (pt = 1|p0) = p20 +
(
1− (1/2)t−1

)
p0q0

P (pt = 1/2|p0) = p0q0(1/2)t−2

P (pt = 0|p0) = q20 +
(
1− (1/2)t−1

)
p0q0

Why do I bother to show you these equations?6 Because you can see pretty quickly
that as t gets big, i.e., the longer our population evolves, the smaller the probability that
pt = 1/2 becomes. In fact, it’s not hard to verify several facts about genetic drift in this
simple situation:

3I know. I’m weird. I actually get a kick out of writing equations!
4Or at least the weird ones among us
5Ask me, if you’re really interested.
6It’s not just that I’m crazy, and it’s not that I’m trying to scare you with algebra.
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1. Heterozygotes will lost from the population over time.

2. One of the two alleles originally present in the population is certain to be lost eventually.
Why?

3. Because the probability that A1 is fixed, i.e., that pt = 1 at some point, is equal to its
initial frequency, p0, and the probability that A2 is fixed is equal to its initial frequency,
q0.

All of these properties are true in general for any finite population and any number of
alleles, provided that there is no mutation and no input of new genetic material from other
popullations.

1. Heterozygotes will lost from the population over time.

2. Genetic drift will eventually lead to loss of all alleles in the population except one.7

3. The probability that any allele will eventually become fixed in the population is equal
to its current frequency.

General properties of genetic drift

What I’ve shown you so far applies only to a haploid population with two individuals. Even
I will admit that it isn’t a very interesting situation. Suppose, however, we now consider
a populaton with N diploid individuals. We can treat it as if it were a population of 2N
haploid individuals using a direct analogy to the process I described earlier, and then things
start to get a little more interesting.8

• Each individual in the population produces a large number of gametes.

• The allele in each gamete is an identical copy of the allele in the individual that
produced it, i.e., A1 begets A1 and A2 begets A2.

• The next generation is constructed by picking 2N gametes at random from the large
number originally produced.

7You obviously can’t lose all of them unless the population becomes extinct.
8Notice, however, that we are making some very important simplifying assumptions that won’t apply to

any real population.
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We can then write a general expression for how allele frequencies will change between
generations. Specifically, the distribution describing the probability that there will be j
copies of A1 in the next generation given that there are i copies in this generation is

P (j A1 in offspring | i A1 in parents) =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
,

i.e., a binomial distribution. I’ll be astonished if any of what I’m about to say is apparent to
any of you from looking at this equation, but it implies three really important things. We’ve
encountered the first two of them already:

• Allele frequencies will tend to change from one generation to the next purely as a result
of sampling error. As a consequence, genetic drift will eventually lead to loss of all
alleles in the population except one.

• The probability that any allele will eventually become fixed in the population is equal
to its current frequency.

• The probability that the allele frequency increases from one generation to the next is
the same as the probability that it decreases.

• The population has no memory.9 The probability that the offspring generation will
have a particular allele frequency depends only on the allele frequency in the parental
generation. It does not depend on how the parental generation came to have that allele
frequency. This is exactly analogous to coin-tossing. The probability that you get a
heads on the next toss of a fair coin is 1/2. It doesn’t matter whether you’ve never
tossed it before or if you’ve just tossed 25 heads in a row.10

Variance of allele frequencies between generations

For a binomial distribution

P (K = k) =

(
N

k

)
pk(1− p)N−k

Var(K) = Np(1− p)

9Technically, we’ve described a Markov chain with a finite state space, but I doubt that you really
care about that. All Markov chains have this “memoryless” property. In fact, it’s called the Markov
property (https://en.wikipedia.org/wiki/Markov_property).

10Of course, if you’ve just tossed 25 heads in a row, you could be forgiven for having your doubts about
whether the coin is actually fair.
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Var(p) = Var(K/N)

=
1

N2
Var(K)

=
p(1− p)

N

Applying this to our situation,

Var(pt+1) =
pt(1− pt)

2N

Var(pt+1) measures the amount of uncertainty about allele frequencies in the next gener-
ation, given the current allele frequency. As you probably guessed long ago, the amount
of uncertainty is inversely proportional to population size. The larger the population, the
smaller the uncertainty.

If you think about this a bit, you might expect that a smaller variance would “slow
down” the process of genetic drift — and you’d be right. It takes some pretty advanced
mathematics to say how much the process slows down as a function of population size,11 but
we can summarize the result in the following equation:

t̄ ≈ −4N (p log p + (1− p) log(1− p)) ,

where t̄ is the average time to fixation of one allele or the other and p is the current allele
frequency.12 So the average time to fixation of one allele or the other increases approximately
linearly with increases in the population size.

Analogy to inbreeding

You may have noticed a similarity between drift and inbreeding. Specifically, both processes
lead to a loss of heterozygosity and an increase in homozygosity. This analogy leads to a
useful heuristic for helping us to understand the dynamics of genetic drift.13

Remember our old friend f , the inbreeding coefficient? I’m going to re-introduce you
to it in the form of the population inbreeding coefficient, the probability that two alleles
chosen at random from a population are identical by descent. We’re going to study how

11Actually, we’ll encounter a way that isn’t quite so hard next week when we get to the coalescent.
12Notice that this equation only applies to the case of one-locus with two alleles, although the principle

applies to any number of alleles.
13But keep in mind. This is only an analogy. Heterozygosity is lost with inbreeding, but the allele frequency

doesn’t change. Heterozygosity is lost with drift, because the allele frequency is changing, leading to loss of
one of the alleles.
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the population inbreeding coefficient changes from one generation to the next as a result of
reproduction in a finite population.14

ft+1 = Prob. ibd from preceding generation

+(Prob. not ibd from prec. gen.)× (Prob. ibd from earlier gen.)

=
1

2N
+
(

1− 1

2N

)
ft

or, in general,

ft+1 = 1−
(

1− 1

2N

)t

(1− f0) .

Summary

There are four characteristics of genetic drift that are particularly important for you to
remember:

1. Allele frequencies tend to change from one generation to the next simply as a result
of sampling error. We can specify a probability distribution for the allele frequency in
the next generation, but we cannot predict the actual frequency with certainty.

2. There is no systematic bias to changes in allele frequency. The allele frequency is as
likely to increase from one generation to the next as it is to decrease.

3. If the process is allowed to continue long enough without input of new genetic material
through migration or mutation, the population will eventually become fixed for only
one of the alleles originally present.15

4. The time to fixation of a single allele is directly proportional to population size, and
the amount of uncertainty associated with allele frequencies from one generation to the
next is inversely related to population size.

Effective population size

I didn’t make a big point of it, but in our discussion of genetic drift so far we’ve assumed
everything about populations that we assumed to derive the Hardy-Weinberg principle, and
we’ve assumed that:

14Remember that I use the abbreviation ibd to mean identical by descent.
15This will hold true even if there is strong selection for keeping alleles in the population. Selection can’t

prevent loss of diversity, only slow it down.
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• We can model drift in a finite population as a result of sampling among haploid gametes
rather than as a result of sampling among diploid genotypes. Since we’re dealing with
a finite population, this effectively means that the two gametes incorporated into an
individual could have come from the same parent, i.e., some amount of self-fertilization
can occur when there’s random union of gametes in a finite, diploid population.

• Since we’re sampling gametes rather than individuals, we’re also implictly assuming
that there aren’t separate sexes.16

• The number of gametes any individual has represented in the next generation is a
binomial random variable.17

• The population size is constant.

How do we deal with the fact that one or more of these conditions will be violated in
just about any case we’re interested in?18 One way would be to develop all the probability
models that incorporate that complexity and try to solve them. That’s nearly impossible,
except through computer simulations. Another, and by far the most common approach, is to
come up with a conversion formula that makes our actual population seem like the “ideal”
population that we’ve been studying. That’s exactly what effective population size is.

The effective size of a population is the size of an ideal population that has the
same properties with respect to genetic drift as our actual population does.

What does that phrase “same properties with respect to genetic drift” mean? Well there are
two ways it can be defined.19

Variance effective size

You may remember20 that the variance in allele frequency in an ideal population is

V ar(pt+1) =
pt(1− pt)

2N
.

So one way we can make our actual population equivalent to an ideal population to make their
allele frequency variances the same. We do this by calculating the variance in allele frequency

16How could there be separate sexes if there can be self-fertilization?
17More about this later.
18OK, OK. They will probably be violated in every case we’re interested in.
19There are actually more than two ways, but we’re only going to talk about two.
20You probably won’t, so I’ll remind you
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for our actual population, figuring out what size of ideal population would produce the same
variance, and pretending that our actual population is the same as an ideal population of
the same size. To put that into an equation,21 let V̂ar(p) be the variance we calculate for
our actual population. Then

N (v)
e =

p(1− p)

2V̂ar(p)

is the variance effective population size, i.e., the size of an ideal population that has the
same properties with respect to allele frequency variance as our actual population. Where
did that equation come from? Well, if we solve for V̂ar(p), we get this:

V̂ar(p) =
p(1− p)

2N
(v)
e

,

which is precisely the equation for the variance in allele frequency in a population with allele
frequency p and effective size Ne.

Inbreeding effective size

You may also remember that we can think of genetic drift as analogous to inbreeding. The
probability of identity by descent within populations changes in a predictable way in relation
to population size, namely

ft+1 =
1

2N
+
(

1− 1

2N

)
ft .

So another way we can make our actual population equivalent to an ideal population is to
make them equivalent with respect to how f changes from generation to generation. We do
this by calculating how the inbreeding coefficient changes from one generation to the next in
our actual population, figuring out what size an ideal population would have to be to show
the same change between generations, and pretending that our actual population is the same
size at the ideal one. So suppose f̂t and f̂t+1 are the actual inbreeding coefficients we’d have
in our population at generation t and t + 1, respectively. Then

f̂t+1 =
1

2N
(f)
e

+

(
1− 1

2N
(f)
e

)
f̂t

=

(
1

2N
(f)
e

)
(1− f̂t) + f̂t

f̂t+1 − f̂t =

(
1

2N
(f)
e

)
(1− f̂t)

21As if that will make it any clearer. Does anyone actually read these footnotes?
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N (f)
e =

1− f̂t

2(f̂t+1 − f̂t)
.

In many applications it’s convenient to assume that f̂t = 0. In that case the calculation gets
much simpler:

N (f)
e =

1

2f̂t+1

.

We also don’t lose anything by taking the simpler approach, because N (f)
e depends only on

how much f changes from one generation to the next, not on its actual magnitude.

Comments on effective population sizes

Those are nice tricks, but there are some important limitations. The biggest is that N (v)
e 6=

N (f)
e if the population size is changing from one generation to the next.22 So you have to

decide which of these two measures is more appropriate for the question you’re studying.

• N (f)
e is naturally related to the number of individuals in the parental populations. It

tells you something about how the probability of identity by descent within a single
population will change over time.

• N (v)
e is naturally related to the number of individuals in the offspring generation. It

tells you something about how much allele frequencies in isolated populations will
diverge from one another.

Examples

This is all pretty abstract. Let’s work through some examples to see how this all plays out.23

In the case of separate sexes and variable population size, I’ll provide a derivation of N (f)
e .

In the case of differences in the number of offspring left by individuals, I’ll just give you the
formula and we’ll discuss some of the implications.

22It’s even worse than that. When the population size is changing, it’s not clear that any of the available
adjustments to produce an effective population size are entirely satisfactory. Well, that’s not entirely true
either. Fu et al. [2] show that there is a reasonable definition in one simple case when the population size
varies, and it happens to correspond to the solution presented below.

23If you’re interested in a comprehensive list of formulas relating various demographic parameters to
effective population size, take a look at [1, p. 362]. They provide a pretty comprehensive summary and a
number of derivations.
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Separate sexes

We’ll start by assuming that f̂t = 0 to make the calculations simple. So we know that

N (f)
e =

1

2f̂t+1

.

The first thing to do is to calculate f̂t+1. To do this we have to break the problem down into
pieces.24

• We assumed that f̂t = 0, so the only way for two alleles to be identical by descent is if
they are identical copies of the same allele in the immediately preceding generation.

• Even if the numbers of reproductive males and reproductive females are different, every
new offspring has exactly one father and one mother. Thus, the probability that the
first gamete selected at random is female is just 1/2, and the probability that the first
gamete selected is male is just 1/2.

• The probability that the second gamete selected is female given that the first one we
selected was female is (N − 1)/(2N − 1), because N out of the 2N alleles represented
among offspring came from females, and there are only N − 1 out of 2N − 1 left after
we’ve already picked one. The same logic applies for male gametes.

• The probability that one particular female gamete was chosen is 1/2Nf , where Nf is
the number of females in the population. Similarly the probability that one particular
male gamete was chosen is 1/2Nm, where Nm is the number of males in the population.

With those facts in hand, we’re ready to calculate f̂t+1.

ft+1 =
(

1

2

)(
N − 1

2N − 1

)(
1

2Nf

)
+
(

1

2

)(
N − 1

2N − 1

)(
1

2Nm

)

=
(

1

2

)(
N − 1

2N − 1

)(
1

2Nf

+
1

2Nm

)

≈
(

1

4

)(
2Nm + 2Nf

4NfNm

)

=
(

1

2

)(
Nm + Nf

4NfNm

)
24Remembering, of course, that f̂t+1 is the probability that two alleles drawn at random are identical by

descent.
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So,

N (f)
e ≈ 4NfNm

Nf + Nm

.

What does this all mean? Well, consider a couple of important examples. Suppose the
numbers of females and males in a population are equal, Nf = Nm = N/2. Then

N (f)
e =

4(N/2)(N/2)

N/2 + N/2

=
4N2/4

N
= N .

The effective population size is equal to the actual population size if the sex ratio is 50:50. If
it departs from 50:50, the effective population size will be smaller than the actual population
size.

Consider the extreme case where there’s only one reproductive male in the population.
Then

N (f)
e =

4Nf

Nf + 1
. (7)

Notice what this equation implies: The effective size of a population with only one reproduc-
tive male (or female) can never be bigger than 4, no matter how many mates that individual
has and no matter how many offspring are produced. At first, this is a little surprising, but
when you realize that under these conditions all offspring are half sibs, it may be a little
less surprising. Since every individual in the population inherited one of two alleles from the
male (their father), there’s a one in four chance that any two alleles taken at random are
identical by descent.

Variable population size

The notation for this one gets a little more complicated, but the ideas are simpler than those
you just survived. Since the population size is changing we need to specify the population
size at each time step. Let Nt be the population size in generation t. Then

ft+1 =
(

1− 1

2Nt

)
ft +

1

2Nt

1− ft+1 =
(

1− 1

2Nt

)
(1− ft)

1− ft+K =

(
K∏
i=1

(
1− 1

2Nt+i

))
(1− ft) .

12



Now if the population size were constant(
K∏
i=1

(
1− 1

2Nt+i

))
=

(
1− 1

2N
(f)
e

)K

.

Dealing with products and powers is inconvenient, but if we take the logarithm of both sides
of the equation we get something simpler:25

K∑
i=1

log

(
1− 1

2Nt+i

)
= K log

(
1− 1

2N
(f)
e

)
.

It’s a well-known fact26 that log(1− x) ≈ −x when x is small. So if we assume that Ne and
all of the Nt are large,27 then

K

(
− 1

2N
(f)
e

)
=

K∑
i=1

− 1

2Nt+i

K

N
(f)
e

=
K∑
i=1

1

Nt+i

N (f)
e =

((
1

K

) K∑
i=1

1

Nt+i

)−1

The quantity on the right side of that last equation is a well-known quantity. It’s the
harmonic mean of the Nt. It’s another well-known fact28 that the harmonic mean of a series
of numbers is always less than its arithmetic mean. This means that genetic drift may
play a much more imporant role than we might have imagined, since the effective size of a
population will be more influenced by times when it is small than by times when it is large.

Consider, for example, a population in which N1 through N9 are 1000, and N10 is 10.

Ne =
((

1

10

)(
9
(

1

1000

)
+
(

1

10

)))−1
≈ 92

versus an arithmetic average of 901. So the population will behave with respect to the
inbreeding associated with drift like a population a tenth of its arithmetic average size.

25OK. I know it doesn’t look any simpler, but trust me it is. We can work with this one. The other one
we can only stare at.

26Well known to some of us at least.
27So that their reciprocals are small
28Are we ever going to run out of well-known facts? Probably not.
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Variation in offspring number

I’m just going to give you this formula. I’m not going to derive it for you.29

N (f)
e =

2N − 1

1 + Vk

2

,

where Vk is the variance in number of offspring among individuals in the population. Re-
member I told you that the number of gametes any individual has represented in the next
generation is a binomial random variable in an ideal population? Well, if the population size
isn’t changing, that means that Vk = 2(1 − 1/N) in an ideal population.30 A little algebra
should convince you that in this case N (f)

e = N . It can also be shown (with more algebra)
that

• N (f)
e < N if Vk > 2(1− 1/N) and

• N (f)
e > N if Vk < 2(1− 1/N).

That last fact is pretty remarkable. Conservation biologists try to take advantage of it to
decrease the loss of genetic variation in small populations, especially those that are captive
bred. If you can reduce the variance in reproductive success, you can substantially increase
the effective size of the population. In fact, if you could reduce Vk to zero, then

N (f)
e = 2N − 1 .

The effective size of the population would then be almost twice its actual size.
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