
The Coalescent

Introduction

I’ve mentioned many times by now that population geneticists often look at the world back-
wards. To those of you who aren’t population geneticists,1 looking at the world backwards is
probably as awkwards as walking backwards. Sometimes, though, it turns out that walking
backwards is useful, as when you’re trying to keep an eye on where you’ve been, not just
where you’re going. That’s what we’re about to do with genetic drift. So far we’ve been try-
ing to predict what will happen in a population given a particular effective population size.
But when we collect data we are often more interested in using those data to understand the
processes that produced the patterns we find in them than in predicting what will happen
in the future. We’re using data to provide insight about where we’ve been, not where we’re
going. So let’s take a backward look at drift and see what we find.

Reconstructing the genealogy of a sample of alleles

Specifically, let’s keep track of the genealogy of alleles. In a finite population, two randomly
chosen alleles will be identical by descent with respect to the immediately preceding genera-
tion with probability 1/2Ne.

2 That means that there’s a chance that two alleles in generation
t are copies of the same allele in generation t−1. If the population size is constant, meaning
that the number of allele copies3 is also constant, that also means that there’s a chance that
some allele copies present in generation t−1 will not have descendants in generation t. Look-
ing backward, then, the number of allele copies in generation t − 1 that have descendants
in generation t is always less than or equal to the number of allele copies in generation t.

1i.e., virtually everyone who is reading these notes.
2That should sound familiar. We used this property when we developed the analogy between inbreeding

and drift. I should also point out that it’s 2Ne because I’m implicitly assuming that we’re dealing with a
diploid population, not a haploid one.

3I’m using the phrase “allele copy” here to refer to distinct physical alleles. Allele copies may or may not
be identical by type or identical by descent. If a diploid population has effective size Ne, then the number of
allele copies is 2Ne. The number of allele types may be 1, 2, or any other integer less than or equal to 2Ne.
Similarly, the number of identity by descent categories among the alleles may be anything rom 1 to 2Ne.
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Figure 1: A schematic depiction of one possible realization of the coalescent process in a
population with 18 haploid gametes. There are four coalescent events in the generation
immediately preceding the last one illustrated, one involving three alleles.

That means if we trace the ancestry of allele copies in a sample back far enough, all of them
will be descended from a single common ancestor.4 Figure 1 provides a simple schematic
illustrating how this might happen.

Time runs from the top of Figure 1 to the bottom, i.e., the current generation is repre-
sented by the circles in the botton row of the figure. Each circle represents an allele. The
eighteen alleles in our current sample are descended from only four alleles that were present
in the populations ten generations ago. The other fourteen alleles present in the population
ten generations ago left no descendants. How far back in time we’d have to go before all
alleles are descended from a single common ancestor depends on the effective size of the
population, because how frequently two (or more) alleles are descended from the same allele
in the preceding generation depends on the effective size of the population, too. But in any
finite population the pattern will look something like the one I’ve illustrated here.

Mathematics of the coalescent: two alleles5

The mathematician J. F. C. Kingman developed a convenient and powerful way to describe
how the time to common ancestry is related to effective population size [3, 4]. The process
he describes is referred to as the coalescent, because it is based on describing the probability

4As you can see, it quickly becomes tedious to write “allele copies.” I’m going to write “allele” throughout
the rest of this discussion. Just remember that when I do, I’m really referring to an allele copy.

5Remember, I’m talking about allele copies here.
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of coalescent events, i.e., those points in the genealogy of a sample of alleles where two alleles
are descended from the same allele in the immediately preceding generation.6 Let’s consider
a simple case, one that we’ve already seen, e.g., two alleles drawn at random from a single
population.

The probability that two alleles drawn at random from a population are copies of the same
allele in the preceding generation is also the probability that two alleles drawn at random
from that population are identical by descent with respect to the immediately preceding
generation. We know what that probability is,7 namely

1

2N
(f)
e

.

I’ll just use Ne from here on out, but keep in mind that the appropriate population size
for use with the coalescent is the inbreeding effective size. Of course, this means that the
probability that two alleles drawn at random from a population are not copies of the same
allele in the preceding generation is

1− 1

2Ne

.

We’d like to calculate the probability that a coalescent event happened at a particular time
t, in order to figure out how far back in the ancestry of these two alleles we have to go before
they have a common ancestor. How do we do that?

Well, in order for a coalescent event to occur at time t, the two alleles must have not have
coalesced in the generations preceding that.8 The probability that they did not coalesce in
the first t− 1 generations is simply (

1− 1

2Ne

)t−1

.

Then after having remained distinct for t−1 generations, they have to coalesce in generation
t, which they do with probability 1/2Ne. So the probability that two alleles chosen at random
coalesced t generations ago is

P (T = t) =
(

1− 1

2Ne

)t−1 ( 1

2Ne

)
. (1)

6An important assumption of the coalescent is that populations are large enough that we can ignore the
possibility that there is more than one coalescent event in a single generation. That also means that we also
only allow coalescence between a pair of alleles, not three or more. In both ways the mathematical model of
the process differs from the diagram in Figure 1.

7Though you may not remember it.
8Remember that we’re counting generations backward in time, so when I say that a coalescent event

occurred at time t I mean that it occurred t generations ago.
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It’s not too hard to show, once we know the probability distribution in equation (1), that
the average time to coalescence for two randomly chosen alleles is 2Ne.

9

It’s also not too hard to arrive at this conclusion intuitively. If I tell you, for example,
that the probability that the UConn football team will win a football game is 10 percent,
you’d probably guess that, on average, you’d have to wait 10 games before they won. Ten
games is just one over the probability of winning any one game. In the case of the coalescent,
the probability of a coalescent event in any generation is 1/2Ne, so the average time to a
coalescent event is 2Ne.

10

Mathematics of the coalescent: multiple alleles

It’s quite easy to extend this approach to multiple alleles.11 We’re interested in seeing
how far back in time we have to go before all alleles are descended from a single common
ancestor. We’ll assume that we have m alleles in our sample. The first thing we have to
calculate is the probability that any two of the alleles in our sample are identical by descent
from the immediately preceding generation. To make the calculation easier, we assume that
the effective size of the population is large enough that the probability of two coalescent
events in a single generation is vanishingly small. We already know that the probability
of a coalescence in the immediately preceding generation for two randomly chosen alleles is
1/2Ne. But there are m(m−1)/2 different pairs of alleles in our sample.12 So the probability
that one pair of these alleles is involved in a coalescent event in the immediately preceding

9If you’ve had a little bit of probability theory, you’ll notice that equation 1 shows that the coalescence
time is a geometric random variable.

10The geometric distribution has a long tail to the right, and the median of the distribution is less than

the mean. Specifically, the median is −d ln(2)
ln(1−1/2Ne)

e, where those funny half brackets represent the “ceiling”

function, meanting that you calculate what’s inside and take the smallest integer larger than that. If Ne = 50,
the average time to coalescence is 100 generations. The median time to coalescence is 69. Most coalescent
events happen well before the mean coalescence time.

11Okay, okay. What I should really have said is “It’s not too hard to extend this approach to multiple
alleles, if you are comfortable with probability thinking.” Remember: I don’t expect you to be able to derive
these results on your own. Don’t worry if you can’t see how you could have come up with the mathematics
that follow. Unless you want to make contributions to developing new theory in population genetics, you
don’t need to do derivations like these. Nonetheless, I think it’s useful for you to see them. That way you
have a better chance of understanding the limitations of coalescence approaches if you use them in analyzing
your own data.

12Where did I get that m(m − 1)/2? You can either take my word for it as “a well known fact,” or you
can ask me about it, and I’ll show you where it comes from.
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generation is (
1

2Ne

)(
m(m− 1)

2

)
. (2)

From this it follows13 that the probability that the first coalescent event involving this sample
of alleles occurred t generations ago is

P (T = t) =

(
1−

(
1

2Ne

)(
m(m− 1)

2

))t−1 (
1

2Ne

)(
m(m− 1)

2

)
. (3)

So the mean time back to the first coalescent event is

2Ne

m(m− 1)/2
=

4Ne

m(m− 1)
generations .

Remember, though, that most coalescent events happen before the mean coalescence time.14

But this is, of course, only the first coalescent event. We were interested in how long we
have to wait until all alleles are descended from a single common ancestor. Now this is where
Kingman’s sneaky trick comes in. After the first coalescent event, we have m − 1 alleles in
our sample, instead of m. So the whole process starts over again with m− 1 alleles instead
of m.15 Since the time to the first coalescence depends only on the number of alleles in the
sample and not on how long the first coalescence event took, we can calculate the average
time until all coalescences have happened as

t̄ =
m∑
k=2

t̄k

=
m∑
k=2

4Ne

k(k − 1)

TAMO

= 4Ne

(
1− 1

m

)
≈ 4Ne

When all alleles have coalesced, there’s only one allele present. Since we haven’t intro-
duced mutation into the coalescent process yet, that’s equivalent to saying that all of the m

13Using logic just like what we used in the two allele case.
14If you don’t remember that, look back at the footnote at the end of the last section. You are reading

these footnotes, aren’t you?
15For anyone who cares, this is another example of the Markov property of genetic drift.
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alleles in our sample are identical by descent, i.e., that one particular allele that was present,
on average, 4Ne generations ago is the ancestor of all of the alleles in our sample, i.e., it has
been fixed. You’re unlikely to remember this, since we didn’t talk about it in lecture, but
4Ne as the time to coalescence may look vaguely familiar. Look at this formula for the time
to fixation of one of two alleles present in a population from the notes on genetic drift:

t̄ ≈ −4N (p log p + (1− p) log(1− p)) .

Does it surprise you that the average time to fixation (going forward in time) looks a lot like
the average time to coalescence (looking backward in time)? It shouldn’t. They’re opposite
sides of the same coin.

A continuous time version of the coalescent

Since the effective size of a population has to be pretty big for the coalescent process to be a
good representation, big enough that (1/2Ne)

2 is negligible, 4Ne is generally in the hundreds
or thousands. That means that even though the coalescent as I formulated it above is a
discrete time process, i.e., events happen at time 1, 2, 3, . . ., it can be convenient to think
of time as continuous, which is surprisingly easy to do. We start with the “well-known fact”
that if p is “small”

log(1− p) ≈ −p .

As a result,

(1− p)t = et log(1−p)

≈ e−pt .

In our case,

p =
k(k − 1)

4Ne

,

when there are k alleles.16 So

P(T = t) =

(
k(k − 1)

4Ne

)
et

k(k−1)
4Ne .

If you’re wondering why there’s a t in that equation instead of the t − 1 you’d get from
substituting direclty into equation (3), it’s because the exponential distribution here is the
limit of the geometric distribution in (3) as the coalescence time grows large.

16Remember, I’m using “alleles” as shorthand for “allele copies” (and wasting a lot more space with this
footnote than I would have if I’d just written “allele copies” in the text).
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An example: Mitochondrial Eve

Cann et al. [1] sampled mitochondrial DNA from 147 humans of diverse racial and geographic
origins.17 Based on the amount of sequence divergence they found among genomes in their
sample and independent estimates of the rate of sequence evolution, they inferred that the
mitochondria in their sample had their most recent common ancestor about 200,000 years
ago. Because all of the most ancient lineages in their sample were from individuals of
African ancestry, they also suggested that mitochondrial Eve lived in Africa. They used
these arguments as evidence for the “Out of Africa” hypothesis for modern human origins,
i.e., the hypothesis that anatomically modern humans arose in Africa about 200,000 years
ago and displaced other members of the genus Homo in Europe and Asia as they spread.
What does the coalescent tell us about their conclusion?

Well, we expect all mitochondrial genomes in the sample to have had a common ancestor
about 2Ne generations ago. Why 2Ne rather than 4Ne? Because mitochondrial genomes are
haploid, not diploid. Furthermore, since we all get our mitochondria from our mothers,18 Ne

in this case refers to the effective number of females.
Given that a human generation is about 20 years, a coalescence time of 200,000 years

implies that the mitochondrial genomes in the Cann et al. sample have their most recent
common ancestor about 10,000 generations ago. If the effective number of females in the
human populations is 5000, that’s exactly what we’d expect. While 5000 may sound awfully
small, given that there are more than 3 billion women on the planet now, remember that
until the recent historical past (no more than 500 generations ago) the human population
was small and humans lived in small hunter-gatherer groups, so an effective number of
females of 5000 and a total effective size of 10,000 may not be unreasonable. If that’s true,
then the geographical location of mitochondrial Eve need not tell us anything about the
origin of modern human populations, because there had to be a coalescence somewhere.
There’s no guarantee, from this evidence alone, that the Y-chromosome Adam would have
lived in Africa, too. Having said that, my limited reading of the literature suggests that
more extensive recent data are consistent with the “Out of Africa” scenario. Y-chromosome
polymorphisms, for example, are also consistent with the “Out of Africa” hypothesis [7].
Interestingly, dating of Y-chromosome polymorphisms suggests that Y-chromosome Adam

17That may seem like a pretty small sample to you, but the technology available to analyze genomes
has advanced tremendously since Cann et al. did their work. To sequence a segment of DNA in 1987
required, among other things, running four separate chemical reactions in test tubes, running samples on a
polyacrylamide gel, producing an autoradiogram from the polyacrylamide, and manually reading the results.
The process took about 2 weeks per sequence, and you could run only 3-4 samples on any one gel.

18Luo et al. [5] recently presented data suggesting that mitochondria may sometimes be biparentally
inherited in humans and that whether or not biparental inheritance occurs seems to be determined by the
nuclear genotype of the mother.
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left Africa only 35,000 – 89,000 years ago.

The coalescent and F -statistics

Suppose we have a sample of alleles from a structured population. For alleles chosen ran-
domly within populations, let the average time to coalescence be t̄0. For alleles chosen
randomly from different populations, let the average time to coalescence be t̄1. If there are k
populations in our sample, the average time to coalescence for two alleles drawn at random
without respect to population is19

t̄ =
1

k
t̄0 +

k − 1

k
t̄1

=
t̄0 + (k − 1)t̄1

k
.

Slatkin [6] pointed out that Fst bears a simple relationship to average coalescence times
within and among populations. Given these definitions of t̄ and t̄0,

Fst =
t̄− t̄0
t̄

=

(
k−1
k

)
t̄1

t̄

≈ t̄1
t̄

.

So another way to think about Fst is as a measure of the proportional increase in coalescence
time that is due to populations being separate from one another. One way to think about
that relationship is this: the longer it has been, on average, since alleles in different pop-
ulations diverged from a common ancestor, the greater the chance that they have become
different. An implication of this relationship is that F -statistics, by themselves, can tell
us something about how recently populations have been connected, relative to the within-
population coalescence time, but they can’t distinguish between recent common ancestry
that is due to migration among populations and recent common ancestry that is due to a
split between populations.

A given pattern of among-population relationships might reflect a migration-drift equi-
librium, a sequence of population splits followed by genetic isolation, or any combination of

19If you don’t see why, don’t worry about it. You can ask if you really care. We only care about t̄ for
what follows anyway.
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the two. If we are willing to assume that populations in our sample have been exchanging
genes long enough to reach stationarity in the drift-migration process, then Fst may tell us
something about migration. If we are willing to assume that there’s been no gene exchange
among our populations, we can infer something about how recently they’ve diverged from
one another. But unless we’re willing to make one of those assumptions, we can’t really say
anything.20

The coalescent and natural selection

It shouldn’t surprise you that if we can study some of the properties of drift and selection, we
can also use the coalescent to understand how natural selection works in a finite population.
Even though the mathematics of the coalescent are ususally simpler than the older diffusion
approach for studying allele frequency changes in a finite population, they are still very
complicated. I’ll simply outline one approach here known as the structured coalescent.

The idea is reasonably simple, especially if we think about selection involving only two
alleles.21 When you start to think about it, you should realize two things pretty quickly:

1. Coalescent events will happen only within each of the two allele classes. If we were to
trace the history back far enough, to the point where the mutation leading to a second
allele occurred, then there might be coalescence involving the two classes — except that
there wouldn’t be two classes, only one.

2. The allele copies22 within one of the two allele classes will all have the same fitness
properties. That means that the genealogy within each allele classs will behave just
like the coalescent you’ve already seen.

There are a couple of further complications. The first one is that the probability of a
coalescent event between two alleles belonging to an allele class whose frequency is pt is

m(m−1)
2

2Nept
.

20We can’t say anything from allele frequencies alone. If we have DNA sequences for the alleles, which
allow us to tell how closely related they are to one another, we can say something. We’ll get to this when
we discuss phylogeography in a few weeks.

21Wakeley [8] provides a reasonably accessible overview. Coop and Griffiths [2] provide all of the gory
details.

22There’s that phrase again.
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If you think about it a bit, that may look reasonably familiar. If it doesn’t, look back at
equation (2). All we’ve done is to reduce the effective size of the population by a factor pt,
which is the fraction of total allele copies that belong to the allele class we’re focusing on.

The second complication is hidden in the first one. Notice that subscript on pt. Since
we’re assuming that natural selection is going on, we expect the allele frequencies to change
over time. This is where the mathematics get really complicated. Since the population
is finite, we can’t simply calculate the trajectory. We have to simulate it. That’s OK
because when applying coalescent ideas to make inferences from data, we’re always simulating
anyway. It’s just that simulating a sample when there is selection is a bit more complicated.

1. We first simulate the allele frequency trajectory, typically using our estimate of the
current allele frequency as a starting point.

2. Then we simulate the coalescent history within each allele class.

3. The result is a structured coalescent sample that we can use for further analyses. We’ll
talk more about how to use these simulated samples when we get to phylogeography.
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