
Association mapping: a (very) brief
overview

Introduction

One approach to understanding more about the genetics of quantitative traits takes advan-
tage of the increasing number of genetic markers available as a result of recent advances in
molecular genetics. Suppose you have two inbred lines that differ in a trait that interests
you, say body weight or leaf width. Call one of them the “high” line and the other the
“low” line.1 Further suppose that you have a whole bunch of molecular markers that differ
between the two lines, and designate the genotype in the “high” line A1A1 and the genotype
in the low line A2A2.

2 One last supposition: Suppose that at loci influencing the phenotype
you’re studying the genotype in the “high” line is Q1Q1 and the genotype in the “low” line
is Q2Q2. Each of these loci is what we call a quantitative trait locus or QTL. Now do the
following experiment:

• Cross the “high” line and the “low” line to construct an F1.

• Intercross individuals in the F1 generation to form an F2.
3

• “Walk” through the genome4 calculating a likelihood score for a QTL at a particular
map position, using what we know about the mathematics of recombination rates and
Mendelian genetics. In calculating the likelihood score we maximize the likelihood of
the data assuming that there is a QTL at this position and estimating the corresponding
additive and dominance effects of the allele. We then identify QTLs as those loci where
there are “significant” peaks in the map of likelihood scores.

1Corresponding to whether the body weight or leaf width is large or small.
2Since these are inbred lines, I can assume that they are homozygous at the marker loci I’ve chosen.
3Note: You could also backcross to either or both of the parental inbred lines. Producing an F2, however,

allows you to estimate both the additive and dominance effects associated with each QTL.
4I forgot to mention another supposition. I am supposing that you either have already constructed a

genetic map using your markers, or that you will construct a genetic map using segregation in the F2 before
you start looking for QTL loci.
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The result is a genetic map showing where QTLs are in the genome and indicating the
magnitude of their additive and dominance effects.

QTL mapping is wonderful — provided that you’re working with an organism where it’s
possible to design a breeding program and where the information derived from that breeding
program is relevant to variation in natural populations. Think about it. If we do a QTL
analysis based on segregation in an F2 population derived from two inbred lines, all we re-
ally know is which loci are associated with phenotypic differences between those two lines.
Typically what we really want to know, if we’re evolutionary biologists, is which loci are
associated with phenotypic differences between individuals in the population we’re studying.
That’s where association mapping comes in. We look for statistical associations between
phenotypes and genotypes across a whole population. We expect there to be such associa-
tions, if we have a dense enough map, because some of our marker loci will be closely linked
to loci responsible for phenotypic variation.

Association mapping

So how does association mapping work? There are two broad approaches, one that is used in
genome-wide association studies (GWAS) that is analogous to QTL mapping and one that
looks for differences between “cases,” those that exhibit a particular phenotype of inter-
est (e.g., a disease state in humans), and “controls,” those that don’t exhibit the phenotype
of interest. Let’s talk about GWAS first.

Genome-wide association study

Principles

Imagine that we have a well-mixed population segregating both for a lot of molecular markers
spread throughout the genome and for loci influencing a trait we’re interested in, like body
weight or leaf width. Let’s call our measurement of that trait zi in the ith individual. Let
xij be the genotype of individual i at the jth locus.5 Then to do association mapping, we
simply fit the following regression model:

yi = xijβj + εij ,

where εij is the residual error in our regression estimate and βj is our estimate of the effect
of substituting one allele for another at locus j, i.e., the additive effect of an allele at locus

5To keep things simple I’m assuming that we’re dealing with biallelic loci, e.g., SNPs, and we can then
order the genotypes as 0, 1, 2 depending on how many copies of the most frequent allele they carry. So xij

is the number of copies of A1 individual i carries at locus j.
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j.6 If βj is significantly different from 0, we have evidence that there is a locus linked to this
marker that influences the phenotype we’re interested in, and we have an estimate of the
additive effect of the alleles at that locus.

Notice that I claimed we have evidence that the locus is linked. That’s a bit of sleight
of hand. I’ve glossed over something very important. What we have direct evidence for
is only that the locus is associated with the phenotype differences. As we’ll see in just a
bit, the observed association might reflect physical linkage between the marker locus and
a locus influencing the phenotype or it could reflect a statistical association that arises for
other reasons, including population structure. So in practice the regression model we fit is a
more complicated than the one I just described. The simplest case is when individuals fall
into obvious groups, e.g., samples from different populations. Then y

(k)
i is the trait value for

individual i. The superscript (k) indicates that this individual belongs to group k.

y
(k)
i = xijβj + φ(k) + εij .

The difference between this model and the one above is that we include a random effect of
group, φ(k), to account for the fact that individuals may have similar phenotypes not because
of similarity in genotypes at loci close to those we’ve scored but because of their similarity
at other loci that differ among groups. More generally, the model looks like

yi = xijβj + φi + εij .

where φi is an individual random effect where the correlation between φi and φj for individu-
als i and j, i.e., ρij, is determined by how closely related they are. The degree of relationship
might be inferred from a pedigree, if one is known, or from coefficients of kinship estimated
from a large suite of genetic markers.

An example: warfarin maintenance dose

Shortly after World War II, warfarin was introduced for use as a a rat poison. By the
mid-1950s it was approved for medical use in the United States as a treatment for dis-
eases in which blood clotting caused a significant threat of stroke. It is still in common
use as a treatment for atrial fibrillation.7 Currently, determining the appropriate dose is
done by closely monitoring the degree of anticoagulation, an INR of 2.5 ± 0.5 (https:
//www.drugs.com/dosage/warfarin.html). In an effort to identify genetic markers that
could be used to choose an appropriate dosage, investigators at the University of Washington

6We can generalize the regression to allow us to estimate dominance effects too, but doing so only
complicates the algebra without providing any additional insight.

7As it happens, my father took warfarin for more than 20 years before his death.
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Figure 1: P -values from a genome-wide analysis of the association between SNP genotype
and warfarin dose. The black line is the genome-wide level for statistical significance, 10−7,
and the brown line is the level, 10−4 at which SNPs identified in the index population were
investigated in replicate populations (from [1]).

studied the relationship between the dose of warfarin patients were receiving and their geno-
type at 550,000 SNP loci [1].8 They identified two loci, VKORC1 and CYP2C9, that were
consistently associated with warfarin dose. VKORC1 encodes the vitamin K epoxide reduc-
taxe complex 1 enzyme, and CYP2C9 encodes a cytochrome P450 (Figure 1). Differences
at VKORC1 account for approximately 25% of the variance in stabilized dose.9

8They log transformed warfarin dose (measured in milligrams per day) before the analysis.
9If you remembera a little human physiology, vitamin K may ring a bell. “The name vitamin K comes from

the German word ‘Koagulationsvitamin.”’ (https://www.webmd.com/vitamins/ai/ingredientmono-983/
vitamin-k, accessed 19 January 2019). Vitamin K plays an important role in blood clotting, so it makes
sense that a locus encoding an enzyme related to vitamin K metabolism would have a strong association
with the dose of warfarin needed to safely reduce blood clotting.
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Case-control study

The GWAS approach I just described works well if the trait we’re studying is continuous,10

but what do we do if the trait we’re interested occurs in only two states, e.g., diseased
vs. healthy? Let’s suppose we have a set of “candidate” loci, i.e., loci that we have some
reason to suspect might be related to expression of the trait. Now let’s suppose we divide our
population sample into two different sets: the “cases,” i.e., those that have the disease,11 and
the “controls,” i.e., those that don’t have the disease. Let’s further assume that each of our
candidate loci has only two alleles.12 Then for each of our candidate loci we can estimate the
allele frequency for the population of cases, pcase, and for the population of controls, pcontrol.
Then we simply ask, do we have evidence that pcase is different from pcontrol. If so, we
have evidence that allelic differences at this locus are associated with different probabilities
of falling into the case category, i.e., allelic differences at this locus are associated with a
gene that influences development of the phenotype. As with our GWAS analysis, we have
to be careful in interpreting this association. It might reflect physical linkage between the
candidate locus and the gene influencing phenotypic development or it might reflect nothing
more than a statistical association.

A digression into two-locus population genetics13

It’s pretty obvious that if two loci are on the same chromosome and tightly linked, alleles
at those loci are likely to be statistically associated with one another, but let’s take a closer
look at what being statistically associated means. We’ll see that while tight physical linkage
generally implies statistical association, the reverse isn’t true. A statistical association can
arise even if the loci are unlinked and independently inherited.

One of the most important properties of a two-locus system is that it is no longer sufficient
to talk about allele frequencies alone, even in a population that satisfies all of the assumptions
necessary for genotypes to be in Hardy-Weinberg proportions at each locus. To see why
consider this. With two loci and two alleles there are four possible gametes:14

10With the caveats about interpreting the association that I mentioned earlier.
11Please note that I’m using the phrase “have the disease” merely because it’s convenient. Most of the

applications of this approach have involved investigations of human disease, but the approach can be used
for any binary phenotype, in which case the phrase “have the disease” can be replaced with the phrase “have
the phenotype of interest.”

12Just as with GWAS, this is a reasonable assumption, since we are probably dealing with SNP markers.
13Note: We’ll go over only a small part of this section in lecture. I’m providing all the details here so you

can find them in the future if you ever need them.
14Think of drawing the Punnett square for a dihybrid cross, if you want.
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Gamete A1B1 A1B2 A2B1 A2B2

Frequency x11 x12 x21 x22

If alleles are arranged randomly into gametes then,

x11 = p1p2

x12 = p1q2

x21 = q1p2

x22 = q1q2 ,

where p1 = freq(A1) and p2 = freq(A2). But alleles need not be arranged randomly into
gametes. They may covary so that when a gamete contains A1 it is more likely to contain
B1 than a randomly chosen gamete, or they may covary so that a gamete containing A1 is
less likely to contain B1 than a randomly chosen gamete. This covariance could be the result
of the two loci being in close physical association, but as we’ll see in a little bit, it doesn’t
have to be. Whenever the alleles covary within gametes

x11 = p1p2 +D

x12 = p1q2 −D
x21 = q1p2 −D
x22 = q1q2 +D ,

where D = x11x22−x12x22 is known as the gametic disequilibrium.15 When D 6= 0 the alleles
within gametes covary, and D measures statistical association between them. It does not
(directly) measure the physical association. Similarly, D = 0 does not imply that the loci
are unlinked, only that the alleles at the two loci are arranged into gametes independently
of one another.

A little diversion

It probably isn’t obvious why we can get away with only one D for all of the gamete fre-
quencies. The short answer is:

There are four gametes. That means we need three parameters to describe the
four frequencies. p1 and p2 are two. D is the third.

15You will usually see D referred to as the linkage disequilibrium. I think that’s misleading. Alleles at
different loci may be non-randomly associated even when they are not physically linked.
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Another way is to do a little algebra to verify that the definition is self-consistent.

D = x11x22 − x12x21
= (p1p2 +D)(q1q2 +D)− (p1q2 −D)(q1p2 −D)

=
(
p1q1p2q2 +D(p1p2 + q1q2) +D2

)
−
(
p1q1p2q2 −D(p1q2 + q1p2) +D2

)
= D(p1p2 + q1q2 + p1q2 + q1p2)

= D (p1(p2 + q2) + q1(q2 + p2))

= D(p1 + q1)

= D .

D in a finite population

In the absence of mutation, D will eventually decay to 0, although the course of that decay
isn’t as regular as what is shown in the Appendix [2]. If we allow recurrent mutation at both
loci, however, where

µ1 µ2

A1 ⇀↽ A2 B1 ⇀↽ B2 ,
ν1 ν2

then it can be shown [3] that the expected value of D2/p1(1− p1)p2(1− p2) is

E(D2)

E(p1(1− p1)p2(1− p2))
=

1

3 + 4Ne(r + µ1 + ν1 + µ2 + ν2)− 2
(2.5+Ne(r+µ1+ν1+µ2+ν2)+Ne(µ1+ν1+µ2+ν2))

≈
1

3 + 4Ner
.

Bottom line: In a finite population, we don’t expect D to go to 0, and the magnitude of D2

is inversely related to amount of recombination between the two loci. The less recombination
there is between two loci, i.e., the smaller r is, the larger the value of D2 we expect.

This has all been a long way16 of showing that our initial intuition is correct. If we can
detect a statistical association between a marker locus and a phenotypic trait, it suggests
that the marker locus and a locus influence expression of the trait are physically linked.
But we have to account for the effect of population structure, and we have to account for
the effect of past population structure.17 Notice also that if the effective population size is
large, D2 may be very small unless r is very small, meaning that you may need to have a

16OK. You can say it. A very long way.
17I haen’t told you why we need to account for population structure, but you’ll see in just a moment.
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Gamete frequencies Allele frequencies
Population A1B1 A1B2 A2B1 A2B2 pi1 pi2 D

1 0.24 0.36 0.16 0.24 0.60 0.40 0.00
2 0.14 0.56 0.06 0.24 0.70 0.20 0.00

Combined 0.19 0.46 0.11 0.24 0.65 0.30 -0.005

Table 1: Gametic disequilibrium in a combined population sample.

very dense genetic map to detect any association between any of your marker loci and loci
that influence the trait you’re studying. As shown in the Appendix, it takes a while for the
statistical association between loci to decay after two distinct populations mix. So if we are
dealing with populations having a history of hybridization, teasing apart physical linkage
and statistical association can become very challenging.18

Population structure with two loci

You can probably guess where this is going. With one locus I showed you that there’s
a deficiency of heterozygotes in a combined sample even if there’s random mating within
all populations of which the sample is composed. The two-locus analog is that you can
have gametic disequilibrium in your combined sample even if the gametic disequilibrium is
zero in all of your constituent populations. Table 1 provides a simple numerical example
involving just two populations in which the combined sample has equal proportions from
each population.

The gory details

You knew that I wouldn’t be satisfied with a numerical example, didn’t you? You knew
there had to be some algebra coming, right? Well, here it is. Let

Di = x11,i − p1ip2i
Dt = x̄11 − p̄1p̄2 ,

where x̄11 = 1
K

∑K
k=1 x11,k, p̄1 = 1

K

∑K
k=1 p1k, and p̄2 = 1

K

∑K
k=1 p2k. Given these definitions,

we can now calculate Dt.

Dt = x̄11 − p̄1p̄2
18Think about what this means for GWAS or case-control studies in human populations.
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=
1

K

K∑
k=1

x11,k − p̄1p̄2

=
1

K

K∑
k=1

(p1kp2k +Dk)− p̄1p̄2

=
1

K

K∑
k=1

(p1kp2k − p̄1p̄2) + D̄

= Cov(p1, p2) + D̄ ,

where Cov(p1, p2) is the covariance in allele frequencies across populations and D̄ is the
mean within-population gametic disequilibrium. Suppose Di = 0 for all subpopulations.
Then D̄ = 0, too (obviously). But that means that

Dt = Cov(p1, p2) .

So if allele frequencies covary across populations, i.e., Cov(p1, p2) 6= 0, then there will be
non-random association of alleles into gametes in the sample, i.e., Dt 6= 0, even if there is
random association alleles into gametes within each population.19

Returning to the example in Table 1

Cov(p1, p2) = 0.5(0.6− 0.65)(0.4− 0.3) + 0.5(0.7− 0.65)(0.2− 0.3)

= −0.005

x̄11 = (0.65)(0.30)− 0.005

= 0.19

x̄12 = (0.65)(0.7) + 0.005

= 0.46

x̄21 = (0.35)(0.30) + 0.005

= 0.11

x̄22 = (0.35)(0.70)− 0.005

= 0.24 .

Implications for GWAS

For GWAS this means that we have to be very careful to account for any population structure
within our data if we want to interpret a statistical association between a locus and a trait

19Well, duh! Covariation of allele frequencies across populations means that alleles are non-randomly
associated across populations. What other result could you possibly expect?
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as indicating that the locus is physically associated with a locus influencing expression of
the trait. In the example you’ll work through in lab we do this by including an estimate of
the genetic relatedness of individuals in our sample in the regression model. Specifically, in
this regression equation

yi = xijβj + φi + εij

ε is pure random error with a mean of 0 and a variance equal to the environmental variance.
φi is a correlated error in which the residual for individual i is correlated with the residual
for individual j and the degree of correlation is related to the degree of relationship between
them.
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Appendix: Transmission genetics with two loci

I’m going to construct a reduced version of a mating table to see how gamete frequencies
change from one generation to the next. There are ten different two-locus genotypes (if
we distinguish coupling, A1B1/A2B2, from repulsion, A1B2/A2B1, heterozygotes as we must
for these purposes). So a full mating table would have 100 rows. If we assume all the
conditions necessary for genotypes to be in Hardy-Weinberg proportions apply, however, we
can get away with just calculating the frequency with which any one genotype will produce
a particular gamete.20

20We’re assuming random union of gametes rather than random mating of genotypes.
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Gametes
Genotype Frequency A1B1 A1B2 A2B1 A2B2

A1B1/A1B1 x211 1 0 0 0
A1B1/A1B2 2x11x12

1
2

1
2

0 0
A1B1/A2B1 2x11x21

1
2

0 1
2

0
A1B1/A2B2 2x11x22

1−r
2

r
2

r
2

1−r
2

A1B2/A1B2 x212 0 1 0 0
A1B2/A2B1 2x12x21

r
2

1−r
2

1−r
2

r
2

A1B2/A2B2 2x12x22 0 1
2

0 1
2

A2B1/A2B1 x221 0 0 1 0
A2B1/A2B2 2x21x22 0 0 1

2
1
2

A2B2/A2B2 x222 0 0 0 1

Where do 1−r
2 and r

2 come from?

Consider the coupling double heterozygote, A1B1/A2B2. When recombination doesn’t hap-
pen, A1B1 and A2B2 occur in equal frequency (1/2), and A1B2 and A2B1 don’t occur at all.
When recombination happens, the four possible gametes occur in equal frequency (1/4). So
the recombination frequency,21 r, is half the crossover frequency,22 c, i.e., r = c/2. Now the
results of crossing over can be expressed in this table:

Frequency A1B1 A1B2 A2B1 A2B2

1− c 1
2

0 0 1
2

c 1
4

1
4

1
4

1
4

Total 2−c
4

c
4

c
4

2−c
4

1−r
2

r
2

r
2

1−r
2

Changes in gamete frequency

We can use the mating table table as we did earlier to calculate the frequency of each gamete
in the next generation. Specifically,

x′11 = x211 + x11x12 + x11x21 + (1− r)x11x22 + rx12x21

= x11(x11 + x12 + x21 + x22)− r(x11x22 − x12x21)
= x11 − rD

21The frequency of recombinant gametes in double heterozygotes.
22The frequency of cytological crossover during meiosis.
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x′12 = x12 + rD

x′21 = x21 + rD

x′22 = x22 − rD .

No changes in allele frequency

We can also calculate the frequencies of A1 and B1 after this whole process:

p′1 = x′11 + x′12
= x11 − rD + x12 + rD

= x11 + x12

= p1

p′2 = p2 .

Since each locus is subject to all of the conditions necessary for Hardy-Weinberg to apply
at a single locus, allele frequencies don’t change at either locus. Furthermore, genotype
frequencies at each locus will be in Hardy-Weinberg proportions. But the two-locus gamete
frequencies change from one generation to the next.

Changes in D

You can probably figure out that D will eventually become zero, and you can probably even
guess that how quickly it becomes zero depends on how frequent recombination is. But I’d
be astonished if you could guess exactly how rapidly D decays as a function of r. It takes a
little more algebra, but we can say precisely how rapid the decay will be.

D′ = x′11x
′
22 − x′12x′21

= (x11 − rD)(x22 − rD)− (x12 + rD)(x21 + rD)

= x11x22 − rD(x11 + x12) + r2D2 − (x12x21 + rD(x12 + x21) + r2D2)

= x11x22 − x12x21 − rD(x11 + x12 + x21 + x22)

= D − rD
= D(1− r)

Notice that even if loci are unlinked, meaning that r = 1/2, D does not reach 0 immediately.
That state is reached only asymptotically. The two-locus analogue of Hardy-Weinberg is
that gamete frequencies will eventually be equal to the product of their constituent allele
frequencies.
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