
Approximate Bayesian Computation

Phylogeography of montane grasshoppers

Lacey Knowles studied grasshoppers in the genus Melanopus. She collected 1275bp of DNA
sequence data from cytochrome oxidase I (COI) from 124 individuals of M. oregonensis
and two outgroup speices. The specimens were collected from 15 “sky-island” sites in the
northern Rocky Mountains (see Figure 1; [5]). Two alternative hypotheses had been proposed
to describe the evolutionary relationships among these grasshoppers (refer to Figure 2 for a
pictorial representation):

• Widespread ancestor: The existing populations might represent independently de-
rived remnants of a single, widespread population. In this case all of the populations
would be equally related to one another.

• Multiple glacial refugia: Populations that shared the same refugium will be closely
related while those that were in different refugia will be distantly related.

As is evident from Figure 2, the two hypotheses have very different consequences for the
coalescent history of alleles in the sample. Since the interrelationships between divergence
times and time to common ancestry differ so markedly between the two scenarios, the pattern
of sequence differences found in relation to the geographic distribution will differ greatly
between the two scenarios.

Using techniques described in Knowles and Maddison [6], Knowles simulated gene trees
under the widespread ancestor hypothesis. She then placed them within a population tree
representing the multiple glacial refugia hypothesis and calculated a statistic, s, that mea-
sures the discordance between a gene tree and the population tree that contains it. This
gave her a distribution of s under the widespread ancestor hypothesis. She compared the s
estimated from her actual data with this distribution and found that the observed value of
s was only 1/2 to 1/3 the size of the value observed in her simulations.1 Let’s unpack that
a bit.

1The discrepancy was largest when divergence from the widespread ancestor was assumed to be very
recent.
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Figure 1: Collection sites for Melanopus oregonensis in the northern Rocky Moun-
tains (from [5]).

Figure 2: Pictorial representations of the “widespread ancestor” (top) and “glacial refugia”
(bottom) hypotheses (from [5]).
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• Knowles estimated the the phylogeny of the haplotypes in her sample. s is the esti-
mated minimum number of among-population migration events necessary to account
for where haplotypes are currently found given the inferred phylogeny [8]. Let’s call
the s estimated from the data sobs.

• Then she simulated a neutral coalescence process in which the populations were derived
from a single, widespread ancestral population. For each simulation she rearranged the
data so that populations were grouped into separate refugia and estimated ssim from
the rearranged data, and she repeated this 100 times for several different times since
population splitting.

The results are shown in Figure 3. As you can see, the observed s value is much smaller than
any of those obtained from the coalescent simulations. That means that the observed data
require far fewer among-population migration events to account for the observed geographic
distribution of haplotypes than would be expected with independent origin of the populations
from a single, widespread ancestor. In short, Knowles presented strong evidence that her
data are not consistent with the widespread ancestor hypothesis.

Approximate Bayesian computation: motivation

Approximate Bayesian Computation (ABC for short), extends the basic idea we’ve just seen
to consider more complicated scenarios. The IMa approach developed by Nielsen, Wakely,
and Hey is potentially very flexible and very powerful [3, 4, 7]. It allows for non-equilibrium
scenarios in which the populations from which we sampled diverged from one another at
different times, but suppose that we think our populations have dramatically increased in
size over time (as in humans) or dramatically changed their distribution (as with an invasive
species). Is there a way to use genetic data to gain some insight into those processes? Would
I be asking that question if the answer were “No”?

An example

Let’s change things up a bit this time and start with an example of a problem we’d like to
solve first. Once you see what the problem is, then we can talk about how we might go about
solving it. The case we’ll discuss is the case of the cane toad, Bufo marinus, in Australia.

You may know that the cane toad is native to the American tropics. It was purposely
introduced into Australia in 1935 as a biocontrol agent, where it has spread across an area
of more than 1 million km2. Its range is still expanding in northern Australia and to a lesser
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Figure 3: Distribution of the observed minimum number of among-population migration
events, s, and the expected minimum number of migration events under the “widespread
ancestor” hypothesis. (from [5]).
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extent in eastern Australia (Figure 4).2 Estoup et al. [2] collected microsatellite data from
30 individuals in each of 19 populations along roughly linear transects in the northern and
eastern expansion areas.

With these data they wanted to distinguish among five possible scenarios describing the
geographic spread:

• Isolation by distance: As the expansion proceeds, each new population is founded
by or immigrated into by individuals with a probability proportional to the distance
from existing populations.

• Differential migration and founding: Identical to the preceding model except
that the probability of founding a population may be different from the probability of
immigration into an existing population.

• “Island” migration and founding: New populations are established from existing
populations without respect to the geographic distances involved, and migration occurs
among populations without respect to the distances involved.

• Stepwise migration and founding with founder events: Both migration and
founding of populations occurs only among immediately adjacent populations. More-
over, when a new population is established, the number of individuals involved may
be very small.

• Stepwise migration and founding without founder events: Identical to the
preceding model except that when a population is founded its size is assumed to be
equal to the effective population size.

That’s a pretty complex set of scenarios. Clearly, you could use Migrate or IMa2 to
estimate parameters from the data Estoup et al. [2] report, but would those parameters allow
you to distinguish those scenarios? Not in any straightforward way that I can see. Neither
Migrate nor IMa2 distinguishes between founding and migration events for example. And
with IMa2 we’d have to specify the relationships among our sampled populations before we
could make any of the calculations. In this case we want to test alternative hypotheses of
population relationship. So what do we do?

2All of this information is from the introduction to [2].
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Figure 4: Maps showing the expansion of the cane toad population in Australia since its
introduction in 1935 (from [2]).
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Approximate Bayesian Computation

Well, in principle we could take an approach similar to what Migrate and IMa2 use. Let’s
start by reviewing what we did last time3 with Migrate and IMa2. In both cases, we knew
how to simulate data given a set of mutation rates, migration rates, local effective population
sizes, and times since divergence. Let’s call that whole, long string of parameters ξ and our
big, complicated data set X. If we run enough simulations, we can keep track of how many
of those simulations produce data identical to the data we collected. With those results
in hand, we can estimate P (X|ξ), the likelihood of the data, as the fraction of simulations
that produce data identical to the data we collected.4 In principle, we could take the same
approach in this, much more complicated, situation. But the problem is that there are
an astronomically large number of different possible coalescent histories and different allelic
configurations possible with any one population history both because the population histories
being considered are pretty complicated and because the coalescent history of every locus
will be somewhat different from the coalescent history at other loci. As a result, the chances
of getting any simulated samples that match our actual samples is virtually nil, and we can’t
estimate P (X|ξ) in the way we have so far.

Approximate Bayesian computation is an approach that allows us to get around this
problem. It was introduced by Beaumont et al. [1] precisely to allow investigators to get
approximate estimates of parameters and data likelihoods in a Bayesian framework. Again,
the details of the implementation get pretty hairy,5 but the basic idea is relatively straight-
forward.6

1. Calculate “appropriate” summary statistics for your data set, e.g., pairwise estimates of
φST (possibly one for every locus if you’re using microsatellite or SNP data), estimates
of within population diversity, counts of the number of segregating sites (for nucleotide
sequence data, both within each population and across the entire sample) or counts of
the number of segregating alleles (for microsatellite data). Call that set of summary
statistics S.

2. Specify a prior distribution for the unknown parameters, ξ.

3More accurately, what Peter Beerli, Joe Felsenstein, Rasmus Nielsen, John Wakeley, and Jody Hey did.
4The actual implementation is a bit more involved than this, but that’s the basic idea.
5You’re welcome to read the Methods in [1], and feel free to ask questions if you’re interested. I have to

confess that there’s a decent chance I won’t be able to answer your question until I’ve done some further
studying. I’ve only used ABC a little, and I haven’t used it for anything that I’ve published — yet.

6OK. This maybe calling it “relatively straightforward” is misleading. Even this simplified outline is
fairly complicated, but compared to some of what you’ve already survived in this course, it may not look
too awful.
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3. Pick a random set of parameter values, ξ′ from the prior distribution and simulate a
data set for that set of parameter values.

4. Calculate the same summary statistics for the simulated data set as you calculated for
your actual data. Call that set of statistics S ′.

5. Calculate the distance between S and S ′.7 Call it δ. If it’s less than some value you’ve
decided on, δ∗, keep track of S ′ and the associated ξ′ and δ. Otherwise, throw all of
them away and forget you ever saw them.

6. Return to step 2 and repeat until you you have accepted a large number of pairs of S ′

and ξ′.

Now you have a bunch of S ′s and a bunch of ξ′s that produced them. Let’s label them
Si and ξi, and let’s remember what we’re trying to do. We’re trying to estimate ξ for our
real data. What we have from our real data is S. So far it seems as if we’ve worked our
computer pretty hard, but we haven’t made any progress.

Here’s where the trick comes in. Suppose we fit a regression to the data we’ve simulated

ξi = α + Siβ + ε ,

where α is an intercept, β is a vector of regression coefficients relating each of the summary
statistics to ξ, and ε is an error vector.8 Once we’ve fit this regression, we can use it to
predict what ξ should be in our real data, namely

ξ = α + Sβ ,

where the S here corresponds to our observed set of summary statistics. If we throw in
some additional bells and whistles, we can approximate the posterior distribution of our
parameters. With that we can get not only a point estimate for ξ, but also credible intervals
for all of its components.

7You could use any one of a variety of different distance measures. A simple Euclidean distance might
be useful, but you could also try something more complicated, like a Mahalanobis distance.

8I know what you’re thinking to yourself now. This doesn’t sound very simple. Trust me. It is as simple
as I can make it. The actual procedure involves local linear regression. I’m also not telling you how to go
about picking δ or how to pick “appropriate” summary statistics. There’s a fair amount of “art” involved
in that.
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Back to the real world9

OK. So now we know how to do ABC, how do we apply it to the cane toad data. Well, using
the additional bells and whistles I mentioned, we end up with a whole distribution of δ for
each of the scenarios we try. The scenario with the smallest δ provides the best fit of the
model to the data. In this case, that corresponds to model 4, the stepwise migration with
founder model, although it is only marginally better than model 1 (isolation by distance)
and model 2 (isolation by distance with differential migration and founding) in the northern
expansion area (Figure 5).

Of course, we also have estimates for various parameters associated with this model:

• Nes : the effective population size when the population is stable.

• Nef : the effective population size when a new population is founded.

• FR: the founding ratio, Nes/Nef .

• m: the migration rate.

• Nesm: the effective number of migrants per generation.

The estimates are summarized in Table 1. Although the credible intervals are fairly
broad,10 there are a few striking features that emerge from this analysis.

• Populations in the northern expansion area are larger, than those in the eastern ex-
pansion region. Estoup et al. [2] suggest that this is consistent with other evidence
suggesting that ecological conditions are more homogeneous in space and more favor-
able to cane toads in the north than in the east.

• A smaller number of individuals is responsible for founding new populations in the
east than in the north, and the ratio of “equilibrium” effective size to the size of the
founding population is bigger in the east than in the north. (The second assertion is
only weakly supported by the results.)

• Migration among populations is more limited in the east than in the north.

As Estoup et al. [2] suggest, results like these could be used to motivate and calibrate
models designed to predict the future course of the invasion, incorporating a balance between
gene flow (which can reduce local adaptation), natural selection, drift, and colonization of
new areas.

9Or at least something resembling the real world
10And notice that these are 90% credible intervals, rather than the conventional 95% credible intervals,

which would be even broader.
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Figure 5: Posterior distribution of δ for the five models considered in Estoup et al. [2].
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Parameter area mean (5%, 90%)
Nes east 744 (205, 1442)

north 1685 (526, 2838)
Nef east 78 (48, 118)

north 311 (182, 448)
FR east 10.7 (2.4, 23.8)

north 5.9 (1.6, 11.8)
m east 0.014 (6.0× 10−6, 0.064)

north 0.117 (1.4× 10−4, 0.664)
Nesm east 4.7 (0.005, 19.9)

north 188 (0.023, 883)

Table 1: Posterior means and 90% credible intervals for parameters of model 4 in the eastern
and northern expansion areas of Bufo marinus.

Limitations of ABC

If you’ve learned anything by now, you should have learned that there is no perfect method.
An obvious disadvantage of ABC relative to either Migrate or IMa2 is that it is much more
computationally intensive.

• Because the scenarios that can be considered are much more complex, it simply takes
a long time to simulate all of the data.

• In the last few years, one of the other disadvantages — that you had to know how to
do some moderately complicated scripting to piece together several different pack-
ages in order to run analysis — has become less of a problem. popABC (http:
//code.google.com/p/popabc/ and DIYABC (http://www1.montpellier.inra.fr/
CBGP/diyabc/) make it relatively easy11 to perform the simulations.

• Selecting an appropriate set of summary statistics isn’t easy, and it turns out that
which set is most appropriate may depend on the value of the parameters that you’re
trying to estimate and the which of the scenarios that you’re trying to compare is
closest to the actual scenario applying to the populations from which you collected the
data. Of course, if you knew what the parameter values were and which scenario was
closest to the actual scenario, you wouldn’t need to do ABC in the first place.

11Emphasis on “relatively”.
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• In the end, ABC allows you to compare a small number of evolutionary scenarios. It
can tell you which of the scenarios you’ve imagined provides the best combination of
fit to the data and parsimonious use of parameters (if you choose model comparison
statistics that include both components), but it takes additional work to determine
whether the model is adequate, in the sense that it does a good job of explaining the
data. Moreover, even if you determine that the model is adequate, you can’t exclude
the possibility that there are other scenarios that might be equally adequate — or even
better.
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