Coalescent approaches to phylogeography and approximate Bayesian Computation

Last time we saw an early example of using coalescent theory to distinguish between two scenarios describing the history of populations. In the example we considered, Knowles [9] compared two scenarios, the “widespread ancestor” and the “multiple glacial refugia” scenarios. To make the comparison she simulated data under the “widespread ancestor” hypothesis, collected the samples into a multiple-refuge tree, and calculated a statistic that measures the discrepancy between the gene trees and the population trees. Her observed gene tree was far less discordant than the simulated trees, leading her to conclude that her grasshoppers had been dispersed among multiple refugia in the past rather than being the remnants of a single, widespread ancestral population. As I mentioned, one limitation of the approach Knowles [9] takes is that it requires the investigator to identify alternative scenarios before beginning the analysis, and it can only identify which of the scenarios is more likely than the others with which it is compared. It cannot determine whether there are other scenarios that are even more likely. Another approach is to back off a bit, specify a particular process that we are interested in and to use what we know about that process to try and estimate its properties.

Coalescent-based estimates of migration rate

A few years before Knowles [9] appeared Beerli and Felsenstein [4, 5] proposed a coalescent-based method to estimate migration rates among populations. As with other analytical methods we’ve encountered in this course, the details can get pretty hairy, but the basic idea is (relatively) simple.

Recall that in a single population we can describe the coalescent history of a sample without too much difficulty. Specifically, given a sample of \(n \) alleles in a diploid population with effective size \(N_e \), the probability that the first coalescent event took place \(t \) generations ago is

\[
P(t|n, N_e) = \left(\frac{n(n-1)}{4N_e} \right) \left(1 - \frac{n(n-1)}{4N_e} \right)^{t-1}.
\]

(1)
Now suppose that we have a sample of alleles from K different populations. To keep things (relatively) simple, we’ll imagine that we have a sample of n alleles from every one of these populations and that every population has an effective size of N_e. In addition, we’ll imagine that there is migration among populations, but again we’ll keep it really simple. Specifically, we’ll assume that the probability that a given allele in our sample from one population had its ancestor in a different population in the immediately preceding generation is m. Under this simple scenario, we can again construct the coalescent history of our sample. How? Funny you should ask.

We start by using the same logic we used to construct equation (1). Specifically, we ask “What’s the probability of an ‘event’ in the immediately preceding generation?” The complication is that there are two kinds of events possible: (1) a coalescent event and (2) a migration event. As in our original development of the coalescent process, we’ll assume that the population sizes are large enough that the probability of two coalescent events in a single time step is so small as to be negligible. In addition, we’ll assume that the number of populations and the migration rates are small enough that the probability of more than one event of either type is so small as to be negligible. That means that all we have to do is to calculate the probability of either a coalescent event or a migration event and combine them to calculate the probability of an event. It turns out that it’s easiest to calculate the probability that there isn’t an event first and then to calculate the probability that there is an event as one minus that.

We already know that the probability of a coalescent event in population k, is

$$P_k(\text{coalescent}|n,N_e) = \frac{n(n-1)}{4N_e},$$

so the probability that there is not a coalescent event in any of our K populations is

$$P(\text{no coalescent}|n,N_e,K) = \left(1 - \frac{n(n-1)}{4N_e}\right)^K.$$

If m is the probability that there was a migration event in a particular population than the probability that there is not a migration event involving any of our nK alleles\footnote{In other words, m is the backwards migration rate, the probability that a gene in one population came from another population in the preceding generation. This is the same migration rate we encountered weeks ago when we discussed the balance between drift and migration.} is

$$P(\text{no migration}|m,K) = (1 - m)^{nK}.$$
So the probability that there is an event of some kind is

\[P(\text{event}|n, m, N_e, K) = 1 - P(\text{no coalescent}|n, N_e, K)P(\text{no migration}|m, K) \]

Now we can calculate the time back to the first event

\[P(\text{event at } t|n, m, N_e, K) = P(\text{event}|n, m, N_e, K) (1 - P(\text{event}|n, m, N_e, K))^{t-1} \]

We can then use Bayes theorem to calculate the probability that the event was a coalescence or a migration and the populations involved. Once we’ve done that, we have a new population configuration and we can start over. We continue until all of the alleles have coalesced into a single common ancestor, and then we have the complete coalescent history of our sample.\(^3\)

That’s roughly the logic that Beerli and Felsenstein use to construct coalescent histories for a sample of alleles from a set of populations—except that they allow effective population sizes to differ among populations and they allow migration rates to differ among all pairs of populations. As if that weren’t bad enough, now things start to get even more complicated.

There are lots of different coalescent histories possible for a sample consisting of \(n\) alleles from each of \(K\) different populations, even when we fix \(m\) and \(N_e\). Worse yet, given any one coalescent history, there are a lot of different possible mutational histories possible. In short, there are a lot of different possible sample configurations consistent with a given set of migration rates and effective population size. Nonetheless, some combinations of \(m\) and \(N_e\) will make the data more likely than others. In other words, we can construct a likelihood for our data:

\[P(\text{data}|m, N_e) \propto f(n, m, N_e, K) \]

where \(f(n, m, N_e, K)\) is some very complicated function of the probabilities we derived above. In fact, the function is so complicated, we can’t even write it down. Beerli and Felsenstein, being very clever people, figured out a way to simulate the likelihood, and Migrate provides a (relatively) simple way that you can use your data to estimate \(m\) and \(N_e\) for a set of populations. In fact, Migrate will allow you to estimate pairwise migration rates among all populations in your sample, and since it can simulate a likelihood, if you put priors on the parameters you’re interested in, i.e., \(m\) and \(N_e\), you can get Bayesian estimates of those parameters rather than maximum likelihood estimates, including credible intervals around those estimates so that you have a good sense of how reliable your estimates are.\(^4\)

\(^3\)This may not seem very simple, but just think about how complicated it would be if I allowed every population to have a different effective size and if I allowed each pair of populations to have different migration rates between them.

\(^4\)If you’d like to see a comparision of maximum likelihood and Bayesian approaches, Beerli [2] provides an excellent overview.
There’s one further complication I need to mention, and it involves a lie I just told you. Migrate can’t give you estimates of m and N_e. Remember how every time we’ve dealt with drift and another process we always end up with things like $4N_em$, $4N_e\mu$, and the like. Well, the situation is no different here. What Migrate can actually estimate are the two parameters $4N_em$ and $\theta = 4N_e\mu$.5 How did μ get in here when I only mentioned it in passing? Well, remember that I said that once the computer has constructed a coalescent history, it has to apply mutations to that history. Without mutation, all of the alleles in our sample would be identical to one another. Mutation is what produces the diversity. So what we get from Migrate isn’t the fraction of a population that’s composed of migrants. Rather, we get an estimate of how much migration contributes to local population diversity relative to mutation. That’s a pretty interesting estimate to have, but it may not be everything that we want.

There’s a further complication to be aware of. Think about the simulation process I described. All of the alleles in our sample are descended from a single common ancestor. That means we are implicitly assuming that the set of populations we’re studying have been around long enough and have been exchanging migrants with one another long enough that we’ve reached a drift-mutation-migration equilibrium. If we’re dealing with a relatively small number of populations in a geographically limited area, that may not be an unreasonable assumption, but what if we’re dealing with populations of crickets spread across all of the northern Rocky Mountains? And what if we haven’t sampled all of the populations that exist? In many circumstances, it may be more appropriate to imagine that populations diverged from one another at some time in the not too distant past, have exchanged genes since their divergence, but haven’t had time to reach a drift-mutation-migration equilibrium. What do we do then?

Divergence and migration

Nielsen and Wakely [10] consider the simplest generalization of Beerli and Felsenstein [4, 5] you could imagine (Figure 1). They consider a situation in which you have samples from only two populations and you’re interested in determining both how long ago the populations diverged from one another and how much gene exchange there has been between the populations since they diverged. As in Migrate mutation and migration rates are confounded

5Depending on the option you pick when you run Migrate you can either get θ and $4N_em$ or θ and $M = m/\mu$.

6Beerli [3] discusses the impact of “ghost” populations. He concludes that you have to be careful about which populations you sample, but that you don’t necessarily need to sample every population. Read the paper for the details.
Figure 1: The simple model developed by Nielsen and Wakeley [10]. \(\theta_a\) is \(4N_e\mu\) in the ancestral population; \(\theta_1\) and \(\theta_2\) are \(4N_e\mu\) in the descendant populations; \(M_1\) and \(M_2\) are \(2N_e m\), where \(m\) is the backward migration rate; and \(T\) is the time since divergence of the two populations.

with effective population size, and the relevant parameters become:

- \(\theta_a\), which is \(4N_e\mu\) in the ancestral population.
- \(\theta_1\), which is \(4N_e\mu\) in the first population.
- \(\theta_2\), which is \(4N_e\mu\) in the second population.
- \(M_1\), which is \(2N_e m\) in the first population, where \(m\) is the fraction of the first population composed of migrants from the second population.
- \(M_2\), which is \(2N_e m\) in the second population.
- \(T\), which is the time since the populations diverged. Specifically, if there have been \(t\) units since the two populations diverged, \(T = t/2N_1\), where \(N_1\) is the effective size of the first population.

Given that set of parameters, you can probably imagine that you can calculate the likelihood of the data for a given set of parameters.\(^7\) Once you can do that you can either

\(^7\)As with Migrate, you can't calculate the likelihood explicitly, but you can approximate it numerically. See [10] for details.
obtain maximum-likelihood estimates of the parameters by maximizing the likelihood, or you can place prior distributions on the parameters and obtain Bayesian estimates from the posterior distribution. Either way, armed with estimates of θ_a, θ_1, θ_2, M_1, M_2, and T you can say something about: (1) the effective population sizes of the two populations relative to one another and relative to the ancestral population, (2) the relative frequency with which migrants enter each of the two populations from the other, and (3) the time at which the two populations diverged from one another. Keep in mind, though, that the estimates of M_1 and M_2 confound local effective population sizes with migration rates. So if $M_1 > M_2$, for example, it does not mean that the fraction of migrants incorporated into population 1 exceeds the fraction incorporated into population 2. It means that the impact of migration has been felt more strongly in population 1 than in population 2.

An example

Orti et al. [11] report the results of phylogenetic analyses of mtDNA sequences from 25 populations of threespine stickleback, *Gasterosteus aculeatus*, in Europe, North America, and Japan. The data consist of sequences from a 747bp fragment of cytochrome b. Nielsen and Wakeley [10] analyze these data using their approach. Their analyses show that “[a] model of moderate migration and very long divergence times is more compatible with the data than a model of short divergence times and low migration rates.” By “very long divergence times” they mean $T > 4.5$, i.e., $t > 4.5N_1$. Focusing on populations in the western (population 1) and eastern Pacific (population 2), they find that the maximum likelihood estimate of M_1 is 0, indicating that there is little if any gene flow from the eastern Pacific (population 2) into the western Pacific (population 1). In contrast, the maximum likelihood estimate of M_2 is about 0.5, indicating that one individual is incorporated into the eastern Pacific population from the western Pacific population every other generation. The maximum-likelihood estimates of θ_1 and θ_2 indicate that the effective size of the population eastern Pacific population is about 3.0 times greater than that of the western Pacific population.

Extending the approach to multiple populations

Several years ago, Jody Hey announced the release of *IMa2*. Building on work described in Hey and Nielsen [7, 8], *IMa2* allows you to estimate relative divergence times, relative effective population sizes, and relative pairwise migration rates for more than two populations at a time. That flexibility comes at a cost, of course. In particular, you have to specify the phylogenetic history of the populations before you begin the analysis.
Approximate Bayesian computation

Just when you thought it was safe to go back into the water, I’m going to complicate things even further. Nielsen, Wakely, and Hey introduced a very flexible and very powerful approach for making inferences about population histories, including the history of migration among populations [10, 7, 8]. It uses coalescent theory to calculate likelihoods and estimate times of population divergence, migration rates, and populations sizes in a surprisingly flexible way, but even it doesn’t cover all possible scenarios. It allows for non-equilibrium scenarios in which the populations from which we sampled diverged from one another at different times, but suppose that we think our populations have dramatically increased in size over time (as in humans) or dramatically changed their distribution (as with an invasive species). Is there a way to use genetic data to gain some insight into those processes? Would I be asking that question if the answer were “No”?

An example

Let’s change things up a bit this time and start with an example of a problem we’d like to solve first. Once you see what the problem is, then we can talk about how we might go about solving it. The case we’ll discuss is the case of the cane toad, *Bufo marinus*, in Australia.

You may know that the cane toad is native to the American tropics. It was purposely introduced into Australia in 1935 as a biocontrol agent, where it has spread across an area of more than 1 million km². Its range is still expanding in northern Australia and to a lesser extent in eastern Australia (Figure 2). Estoup et al. [6] collected microsatellite data from 30 individuals in each of 19 populations along roughly linear transects in the northern and eastern expansion areas.

With these data they wanted to distinguish among five possible scenarios describing the geographic spread:

- **Isolation by distance**: As the expansion proceeds, each new population is founded by or immigrated into by individuals with a probability proportional to the distance from existing populations.

- **Differential migration and founding**: Identical to the preceding model except that the probability of founding a population may be different from the probability of immigration into an existing population.

8 Look on the bright side. The semester is nearly over. Besides, you need to know a little about approximate Bayesian computation in order to write up your final problem.

9 All of this information is from the introduction to [6].
Figure 2: Maps showing the expansion of the cane toad population in Australia since its introduction in 1935 (from [6]).
• **“Island” migration and founding**: New populations are established from existing populations without respect to the geographic distances involved, and migration occurs among populations without respect to the distances involved.

• **Stepwise migration and founding with founder events**: Both migration and founding of populations occurs only among immediately adjacent populations. Moreover, when a new population is established, the number of individuals involved may be very small.

• **Stepwise migration and founding without founder events**: Identical to the preceding model except that when a population is founded its size is assumed to be equal to the effective population size.

That’s a pretty complex set of scenarios. Clearly, you could use Migrate or IMa2 to estimate parameters from the data Estoup et al. [6] report, but would those parameters allow you to distinguish those scenarios? Not in any straightforward way that I can see. Neither Migrate nor IMa2 distinguishes between founding and migration events for example. And with IMa2 we’d have to specify the relationships among our sampled populations before we could make any of the calculations. In this case we want to test alternative hypotheses of population relationship. So what do we do?

Approximate Bayesian Computation

Well, in principle we could take an approach similar to what Migrate and IMa2 use. Let’s start by reviewing what we did last time with Migrate and IMa2. In both cases, we knew how to simulate data given a set of mutation rates, migration rates, local effective population sizes, and times since divergence. Let’s call that whole, long string of parameters ϕ and our big, complicated data set X. If we run enough simulations, we can keep track of how many of those simulations produce data identical to the data we collected. With those results in hand, we can estimate $P(X|\phi)$, the likelihood of the data, as the fraction of simulations that produce data identical to the data we collected. In principle, we could take the same approach in this, much more complicated, situation. But the problem is that there are an astronomically large number of different possible coalescent histories and different allelic configurations possible with any one population history both because the population histories being considered are pretty complicated and because the coalescent history of every locus will be somewhat different from the coalescent history at other loci. As a result, the

10 More accurately, what Peter Beerli, Joe Felsenstein, Rasmus Nielsen, John Wakeley, and Jody Hey did

11 The actual implementation is a bit more involved than this, but that’s the basic idea.
chances of getting *any* simulated samples that match our actual samples is virtually nil, and we can’t estimate \(P(X|\phi) \) in the way we have so far.

Approximate Bayesian computation is an approach that allows us to get around this problem. It was introduced by Beaumont et al. [1] precisely to allow investigators to get approximate estimates of parameters and data likelihoods in a Bayesian framework. Again, the details of the implementation get pretty hairy,\(^{12}\) but the basic idea is relatively straightforward.\(^{13}\)

1. Calculate “appropriate” summary statistics for your data set, e.g., pairwise estimates of \(\phi_{ST} \) (possibly one for every locus if you’re using microsatellite or SNP data), estimates of within population diversity, counts of the number of segregating sites (for nucleotide sequence data, both within each population and across the entire sample). Call that set of summary statistics \(S \).

2. Specify a prior distribution for the unknown parameters, \(\phi \).

3. Pick a random set of parameter values, \(\phi' \) from the prior distribution and simulate a data set for that set of parameter values.

4. Calculate the same summary statistics for the simulated data set as you calculated for your actual data. Call that set of statistics \(S' \).

5. Calculate the Euclidean distance between \(S \) and \(S' \). Call it \(\delta \). If it’s less than some value you’ve decided on, \(\delta^* \), keep track of \(S' \) and the associated \(\phi' \) and \(\delta \). Otherwise, throw all of them away and forget you ever saw them.

6. Return to step 2 and repeat until you you have accepted a large number of pairs of \(S' \) and \(\phi' \).

Now you have a bunch of \(S' \)s and a bunch of \(\phi' \)s that produced them. Let’s label them \(S_i \) and \(\phi_i \), and let’s remember what we’re trying to do. We’re trying to estimate \(\phi \) for our real data. What we have from our real data is \(S \). So far it seems as if we’ve worked our computer pretty hard, but we haven’t made any progress.

Here’s where the trick comes in. Suppose we fit a regression to the data we’ve simulated

\[
\phi_i = \alpha + S_i \beta + \epsilon ,
\]

\(^{12}\) You’re welcome to read the Methods in [1], and feel free to ask questions if you’re interested.

\(^{13}\) OK. This maybe calling it “relatively straightforward” is misleading. Even this simplified outline is fairly complicated, but compared to some of what you’ve already survived in this course, it may not look too awful.
where α is an intercept, β is a vector of regression coefficients relating each of the summary statistics to ϕ, and ϵ is an error vector.14 Now we can use that regression relationship to predict what ϕ should be in our real data, namely

$$\phi = \alpha + S\beta$$

If we throw in some additional bells and whistles, we can approximate the posterior distribution of our parameters. With that we can get not only a point estimate for ϕ, but also credible intervals for all of its components.

Back to the real world15

OK. So now we know how to do ABC, how do we apply it to the cane toad data. Well, using the additional bells and whistles I mentioned, we end up with a whole distribution of δ for each of the scenarios we try. The scenario with the smallest δ provides the best fit of the model to the data. In this case, that corresponds to model 4, the stepwise migration with founder model, although it is only marginally better than model 1 (isolation by distance) and model 2 (isolation by distance with differential migration and founding) in the northern expansion area (Figure 3).

Of course, we also have estimates for various parameters associated with this model:

- N_{es}: the effective population size when the population is stable.
- N_{ef}: the effective population size when a new population is founded.
- F_R: the founding ratio, N_{es}/N_{ef}.
- m: the migration rate.
- $N_{es}m$: the effective number of migrants per generation.

The estimates are summarized in Table 1. Although the credible intervals are fairly broad,16 There are a few striking features that emerge from this analysis.

14I know what you’re thinking to yourself now. This doesn’t sound very simple. Trust me. It is as simple as I can make it. The actual procedure involves local linear regression. I’m also not telling you how to go about picking δ or how to pick “appropriate” summary statistics. There’s a fair amount of “art” involved in that.

15Or at least something resembling the real world

16And notice that these are 90% credible intervals, rather than the conventional 95% credible intervals, which would be even broader.
Figure 3: Posterior distribution of δ for the five models considered in Estoup et al. [6].
<table>
<thead>
<tr>
<th>Parameter</th>
<th>area</th>
<th>mean (5%, 90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{es}</td>
<td>east</td>
<td>744 (205, 1442)</td>
</tr>
<tr>
<td></td>
<td>north</td>
<td>1685 (526, 2838)</td>
</tr>
<tr>
<td>N_{ef}</td>
<td>east</td>
<td>78 (48, 118)</td>
</tr>
<tr>
<td></td>
<td>north</td>
<td>311 (182, 448)</td>
</tr>
<tr>
<td>F_R</td>
<td>east</td>
<td>10.7 (2.4, 23.8)</td>
</tr>
<tr>
<td></td>
<td>north</td>
<td>5.9 (1.6, 11.8)</td>
</tr>
<tr>
<td>m</td>
<td>east</td>
<td>0.014 (6.0 × 10^{-6}, 0.064)</td>
</tr>
<tr>
<td></td>
<td>north</td>
<td>0.117 (1.4 × 10^{-4}, 0.664)</td>
</tr>
<tr>
<td>$N_{es,m}$</td>
<td>east</td>
<td>4.7 (0.005, 19.9)</td>
</tr>
<tr>
<td></td>
<td>north</td>
<td>188 (0.023, 883)</td>
</tr>
</tbody>
</table>

Table 1: Posterior means and 90% credible intervals for parameters of model 4 in the eastern and northern expansion areas of *Bufo marinus*.

- Populations in the northern expansion area are larger than those in the eastern expansion region. Estoup et al. [6] suggest that this is consistent with other evidence suggesting that ecological conditions are more homogeneous in space and more favorable to cane toads in the north than in the east.

- A smaller number of individuals is responsible for founding new populations in the east than in the north, and the ratio of “equilibrium” effective size to the size of the founding population is bigger in the east than in the north. (The second assertion is only weakly supported by the results.)

- Migration among populations is more limited in the east than in the north.

As Estoup et al. [6] suggest, results like these could be used to motivate and calibrate models designed to predict the future course of the invasion, incorporating a balance between gene flow (which can reduce local adaptation), natural selection, drift, and colonization of new areas.

Limitations of ABC

If you’ve learned anything by now, you should have learned that there is no perfect method. An obvious disadvantage of ABC relative to either *Migrate* or *IMa2* is that it is much more computationally intensive.
• Because the scenarios that can be considered are much more complex, it simply takes a long time to simulate all of the data.

• In the last few years, one of the other disadvantages—that you had to know how to do some moderately complicated scripting to piece together several different packages in order to run analysis—has become less of a problem. popABC (http://code.google.com/p/popabc/ and DIYABC (http://www1.montpellier.inra.fr/CBGP/diyabc/) make it relatively easy17 to perform the simulations.

• Selecting an appropriate set of summary statistics isn’t easy, and it turns out that which set is most appropriate may depend on the value of the parameters that you’re trying to estimate and the which of the scenarios that you’re trying to compare is closest to the actual scenario applying to the populations from which you collected the data. Of course, if you knew what the parameter values were and which scenario was closest to the actual scenario, you wouldn’t need to do ABC in the first place.

• In the end, ABC allows you to compare a small number of evolutionary scenarios. It can tell you which of the scenarios you’ve imagined provides the best combination of fit to the data and parsimonious use of parameters (if you choose model comparison statistics that include both components), but it takes additional work to determine whether the model is adequate, in the sense that it does a good job of explaining the data. Moreover, even if you determine that the model is adequate, you can’t exclude the possibility that there are other scenarios that might be equally adequate—or even better.

References

17Emphasis on “relatively”.

14

Creative Commons License

These notes are licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.