
Introduction to quantitative genetics

So far in this course we have dealt entirely either with the evolution of charac-
ters that are controlled by simple Mendelian inheritance at a single locus or with the
evolution of molecular sequences. Even last week when we were dealing with popu-
lation genomic data, data from hundreds or thousands of loci, we were treating the
variation at each locus separately and combining results across loci. I have some old
notes on gametic disequilibrium and how allele frequencies change at two loci simultane-
ously, but they’re in the “Old notes, no longer updated” section of the book version of
these notes (https://figshare.com/articles/journal_contribution/Lecture_notes_
in_population_genetics/100687), and we didn’t discuss them.1 In every example we’ve
considered so far we’ve imagined that we could understand something about evolution by
examining the evolution of a single gene. That’s the domain of classical population genetics.

For the next few weeks we’re going to be exploring a field that’s older than classical
population genetics, although the approach we’ll be taking to it involves the use of population
genetic machinery.2 If you know a little about the history of evolutionary biology, you may
know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between
the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns,
Bateson, and Morgan).

Biometricians asserted that the really important variation in evolution didn’t follow
Mendelian rules. Height, weight, skin color, and similar traits seemed to

• vary continuously,

• show blending inheritance, and

• show variable responses to the environment.

Since variation in such quantitative traits seemed to be more obviously related to organismal
adaptation than the “trivial” traits that Mendelians studied, it seemed obvious to the bio-
metricians that Mendelian geneticists were studying a phenomenon that wasn’t particularly
interesting.

1We will spend some time talking about gametic disequilibrium when we talk about association mapping
in a couple of weeks.

2In fact, it involves the use of the single-locus population genetic machinery we’ve been using all semester.
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Figure 1: Hypothetical illustration of reaction norms for two genotypes across
a 1-dimensional environmental gradient (from Wikipedia, Public Domain,
https://en.wikipedia.org/w/index.php?curid=3925138, accessed 9 April 2017).

Mendelians dismissed the biometricians, at least in part, because they seemed not to
recognize the distinction between genotype and phenotype. It seemed to at least some
Mendelians that traits whose expression was influenced by the environment were, by defi-
nition, not inherited. Moreover, the evidence that Mendelian principles accounted for the
inheritance of many discrete traits was incontrovertible.

Woltereck’s [3] experiments on Daphnia helped to show that traits whose expression is
environmentally influenced may also be inherited. He introduced the idea of a norm of reac-
tion to describe the observation that the same genotype may produce different phenotypes in
different environments (Figure 1). When you fertilize a plant, for example, it will grow larger
and more robust than when you don’t. The phenotype an organism expresses is, therefore,
a product of both its genotype and its environment.

Nilsson-Ehle’s [2] experiments on inheritance of kernel color in wheat showed how contin-
uous variation and Mendelian inheritance could be reconciled (Figure 2). He demonstrated
that what appeared to be continuous variation in color from red to white with blending
inheritance could be understood as the result of three separate genes influencing kernel color
that were inherited separately from one another. It was the first example of what’s come to
be known as polygenic inheritance. Fisher [1], in a paper that grew out of his undergraduate
Honors thesis at Cambridge University, set forth the mathematical theory that describes
how it all works. That’s the theory of quantitative genetics, and it’s what we’re going to
spend the next several weeks discussing.
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Figure 2: Results from one of Nilsson-Ehle’s crosses illustrating polygenic inhertance of ker-
nel color in wheat (from http://www.biology-pages.info/Q/QTL.html, accessed 9 April
2017).
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An overview of where we’re headed

Woltereck’s ideas force us to realize that when we see a phenotypic difference between two
individuals in a population there are three possible sources for that difference:

1. The individuals have different genotypes.

2. The individuals developed in different environments.

3. The individuals have different genotypes and they developed in different environments.

This leads us naturally to think that phenotypic variation consists of two separable compo-
nents, namely genotypic and environmental components.3 Putting that into an equation

Var(P ) = Var(G) + Var(E) ,

where Var(P ) is the phenotypic variance, Var(G) is the genetic variance, and Var(E) is
the environmental variance.4 As we’ll see in just a moment, we can also partition the
genetic variance into components, the additive genetic variance, Var(A), and the dominance
variance, Var(D).5

There’s a surprisingly subtle and important insight buried in that very simple equation:
Because the expression of a quantitative trait is a result both of genes involved in that
trait’s expression and the environment in which it is expressed, it doesn’t make sense to say
of a particular individual’s phenotype that genes are more important than environment in
determining it. You wouldn’t have a phenotype without both. At most what we can say is
that when we look at a particular population of organisms some fraction of the phenotypic
variation they exhibit is due to differences in the genes they carry and that some fraction
is due to differences in the environment they have experienced.6 If we have two individuals
with different phenotypes, e.g., Ralph is tall and Harry is short, we can’t even say whether
the difference between Ralph and Harry is because of differences in their genes or differences
in their developmental environment.

3We’ll soon see that separating genotypic and environmental components is far from trivial. I’m also
putting aside, for the moment, that genotypes may differ in their response to the environment, even though
that’s what I illustrated in discussing norms of reaction.

4Strictly speaking we should also include a term for the interaction between genotype and environment,
but we’ll ignore that for the time being. I illustrated the interaction between genotype and environment in
discussing norms of reaction.

5We could even partition it further into additive by additive, additive by dominance, and dominance by
dominance epistatic variance, but let’s not go there.

6When I put it this way, I hope it’s obvious that I’m neglecting genotype-environment interactions, and
that I’m oversimplifying a lot.
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One important implication of this insight is that much of the “nature vs. nurture” debate
concerning human intelligence or human personality characteristics is misguided. The intel-
ligence and personality that you have is a product of both the genes you happened to inherit
and the environment that you happened to experience. Any differences between you and the
person next to you probably reflect both differences in genes and differences in environment.
Moreover, even if the differences between you and your neighbor are due to differences in
genes, it doesn’t mean that those differences are fixed and indelible. You may be able to do
something to change them.

Take phenylketonuria, for example. It’s a condition in which individuals are ho-
mozygous for a deficiency that prevents them from metabolizing phenylalanine (https:
//medlineplus.gov/phenylketonuria.html). If individuals with phenylketonuria eat a
normal diet, severe intellectual disabilities can result by the time an infant is one year old.
But if they eat a diet that is very low in phenylalanine, their development is completely nor-
mal. In other words, clear genetic differences at this locus can lead to dramatic differences
in cognitive ability, but they don’t have to.

It’s often useful to talk about how much of the phenotypic variance is a result of additive
genetic variance or of genetic variance.

h2n =
Var(A)

Var(P )

is what’s known as the narrow-sense heritability. It’s the proportion of phenotypic variance
that’s attributable to differences among individuals in their additive genotype,7 much as Fst
can be thought of as the proportion of genotypic diversity that attributable to differences
among populations. Similarly,

h2b =
Var(G)

Var(P )

is the broad-sense heritability. It’s the proportion of phenotypic variance that’s attributable
to differences among individuals in their genotype. It is not, repeat NOT, a measure of how
important genes are in determining phenotype. Every individuals phenotype is determined
both by its genes and by its phenotype. It measures how much of the difference among
individuals is attributable to differences in their genes.8 Why bother to make the distinction
between narrow- and broad-sense heritability? Because, as we’ll see, it’s only the additive
genetic variance that responds to natural selection.9 In fact,

R = h2nS ,

7Don’t worry about what I mean by additive genotype— yet. We’ll get to it soon enough.
8As we’ll see later it can do this only for the range of environments in which it was measured.
9Or at least only the additive genetic variance responds to natural selection when zygotes are found in

Hardy-Weinberg proportions.
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Genotype A1A1 A1A2 A2A2

Frequency p2 2pq q2

Genotypic value x11 x12 x22
Additive genotypic value 2α1 α1 + α2 2α2

Table 1: Fundamental parameter definitions for quantitative genetics with one locus and two
alleles.

where R is the response to selection and S is the selective differential.
As you’ll see in the coming weeks, there’s a lot of stuff hidden behind these simple

equations, including a lot of assumptions. But quantitative genetics is very useful. Its
principles have been widely applied in plant and animal breeding for more than a century, and
they have been increasingly applied in evolutionary investigations in the last forty years.10.

Partitioning the phenotypic variance

Before we worry about how to estimate any of those variance components I just mentioned,
we first have to understand what they are. So let’s start with some definitions (Table 1).11

You should notice something rather strange about Table 1 when you look at it. I moti-
vated the entire discussion of quantitative genetics by talking about the need to deal with
variation at many loci, and what I’ve presented involves only two alleles at a single locus. I
do this for two reasons:

1. It’s not too difficult to do the algebra with multiple alleles at one locus instead of only
two, but it gets messy, doesn’t add any insight, and I’d rather avoid the mess.

2. Doing the algebra with multiple loci involves a lot of assumptions, which I’ll mention
when we get to applications, and the algebra is even worse than with multiple alleles.

Fortunately, the basic principles extend with little modification to multiple loci, so we can
see all of the underlying logic by focusing on one locus with two alleles where we have a
chance of understanding what the different variance components mean.

10I used to include a joke here that I’ve decided not to include any more. It’s not very funny, and some
people might find it offensive. If for some reason you want to know what the joke is, you can find it in the
2017 version of these notes on Figshare (https://doi.org/10.6084/m9.figshare.100687.v2)

11Warning! There’s a lot of algebra and even a little differntial calculus between here and the end. It’s
unavoidable. You can’t possibly understand what additive genetic variance is without it. I’ll try to focus on
principles, and I’ll do my best to keep reminding us all why we’re slogging through the math, but a lot of
the math that follows is necessary. Sorry about that.
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Figure 3: The phenotype distribution in a population in which the three genotypes at a
single locus with two alleles occur in Hardy-Weinberg proportions and the alleles occur in
equal frequency. The A1A1 genotype has a mean trait value of 1, the A1A2 genotype has a
mean trait value of 2, and the A2A2 genotype has a mean trait value of 3, but each genotype
can produce a range of phenotypes with the standard deviation of the distribution being
0.25 in each case.

Two terms in Table 1 will almost certainly be unfamiliar to you: genotypic value and
additive genotypic value. Of the two, genotypic value is the easiest to understand (Figure 3).
It simply refers to the average phenotype associated with a given genotype.12 The additive
genotypic value refers to the average phenotype associated with a given genotype, as would
be inferred from the additive effect of the alleles of which it is composed. That didn’t help
much, did it? That’s because I now need to tell you what we mean by the additive effect of
an allele.13

The additive effect of an allele

In constructing Table 1 I used the quantities α1 and α2, but I didn’t tell you where they came
from. Obviously, the idea should be to pick values of α1 and α2 that give additive genotypic

12Remember. We’re now considering traits in which the environment influences the phenotypic expression,
so the same genotype can produce different phenotypes, depending on the environment in which it develops.

13Hold on. Things get even more interesting, i.e., worse from here.
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values that are reasonably close to the genotypic values. A good way to do that is to minimize
the squared deviation between the two, weighted by the frequency of the genotypes. So our
first big assumption is that genotypes are in Hardy-Weinberg proportions.14

The objective is to find values for α1 and α2 that minimize:

a = p2[x11 − 2α1]
2 + 2pq[x12 − (α1 + α2)]

2 + q2[x22 − 2α2]
2 .

To do this we take the partial derivative of a with respect to both α1 and α2, set the resulting
pair of equations equal to zero, and solve for α1 and α2.

15

∂a

∂α1

= p2{2[x11 − 2α1][−2]}+ 2pq{2[x12 − (α1 + α2)][−1]}

= −4p2[x11 − 2α1]− 4pq[x12 − (α1 + α2)]

∂a

∂α2

= q2{2[x22 − 2α2][−2]}+ 2pq{2[x12 − (α1 + α2)][−1]}

= −4q2[x22 − 2α2]− 4pq[x12 − (α1 + α2)]

Thus, ∂a
∂α1

= ∂a
∂α2

= 0 if and only if

p2(x11 − 2α1) + pq(x12 − α1 − α2) = 0

q2(x22 − 2α2) + pq(x12 − α1 − α2) = 0 (1)

Adding the equations in (1) we obtain (after a little bit of rearrangement)

[p2x11 + 2pqx12 + q2x22]− [p2(2α1) + 2pq(α1 + α2) + q2(2α2)] = 0 . (2)

Now the first term in square brackets is just the mean phenotype in the population, x̄.
Thus, we can rewrite equation (2) as:

x̄ = 2p2α1 + 2pq(α1 + α2) + 2q2α2

= 2pα1(p+ q) + 2qα2(p+ q)

= 2(pα1 + qα2) . (3)

14As you should have noticed in Table 1.
15We won’t bother with proving that the resulting estimates produce the minimum possible value of a.

Just take my word for it. Or if you don’t believe me and know a little calculus, take the second partials
of a and evaluate it with the values of α1 and α2 substituted in. You’ll find that the resulting matrix of
partial derivatives, the Hessian matrix, is positive definite, meaning that we’ve found values that minimize
the value of a. If you don’t know what any of that means, just take my word for it that the values of α1 and
α2 we get minimize the value of a.
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Now divide the first equation in (1) by p and the second by q.

p(x11 − 2α1) + q(x12 − α1 − α2) = 0 (4)

q(x22 − 2α2) + p(x12 − α1 − α2) = 0 . (5)

Thus,

px11 + qx12 = 2pα1 + qα1 + qα2

= α1(p+ q) + pα1 + qα2

= α1 + pα1 + qα2

= α1 + x̄/2

α1 = px11 + qx12 − x̄/2 .

Similarly,

px12 + qx22 = 2qα2 + pα1 + pα2

= α2(p+ q) + pα1 + qα2

= α2 + pα1 + qα2

= α2 + x̄/2

α2 = px12 + qx22 − x̄/2 .

α1 is the additive effect of allele A1, and α2 is the additive effect of allele A2. If we use these
expressions, the additive genotypic values are as close to the genotypic values as possible,
given the particular allele freequencies in the population.16

Components of the genetic variance

Let’s assume for the moment that we can actually measure the genotypic values. Later, we’ll
relax that assumption and see how to use the resemblance among relatives to estimate the
genetic components of variance. But it’s easiest to see where they come from if we assume
that the genotypic value of each genotype is known. If it is then, writing Vg for Var(G)

Vg = p2[x11 − x̄]2 + 2pq[x12 − x̄]2 + q2[x22 − x̄]2 (6)

= p2[x11 − 2α1 + 2α1 − x̄]2 + 2pq[x12 − (α1 + α2) + (α1 + α2)− x̄]2

16If you’ve been paying close attention and you have a good memory, the expressions for α1 and α2 may
look vaguely familiar. They look a lot like the expressions for marginal fitnesses we encountered when
studying viability selection.
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+q2[x22 − 2α2 + 2α2 − x̄]2

= p2[x11 − 2α1]
2 + 2pq[x12 − (α1 + α2)]

2 + q2[x22 − 2α2]
2

+p2[2α1 − x̄]2 + 2pq[(α1 + α2)− x̄]2 + q2[2α2 − x̄]2

+p2[2(x11 − 2α1)(2α1 − x̄)] + 2pq[2(x12 − {α1 + α2})({α1 + α2} − x̄)]

+q2[2(x22 − 2α2)(2α2 − x̄)] . (7)

There are two terms in (7) that have a biological (or at least a quantitative genetic) inter-
pretation. The term on the first line is the average squared deviation between the genotypic
value and the additive genotypic value. It will be zero only if the effects of the alleles can be
decomposed into strictly additive components, i.e., only if the pheontype of the heterozygote
is exactly intermediate between the phenotype of the two homozygotes. Thus, it is a measure
of how much variation is due to non-additivity (dominance) of allelic effects. In short, the
dominance genetic variance, Vd, is

Vd = p2[x11 − 2α1]
2 + 2pq[x12 − (α1 + α2)]

2 + q2[x22 − 2α2]
2 . (8)

Similarly, the term on the second line of (7) is the average squared deviation between the
additive genotypic value and the mean genotypic value in the population. Thus, it is a
measure of how much variation is due to differences between genotypes in their additive
genotype. In short, the additive genetic variance, Va, is

Va = p2[2α1 − x̄]2 + 2pq[(α1 + α2)− x̄]2 + q2[2α2 − x̄]2 . (9)

What about the terms on the third and fourth lines of the last equation in 7? Well, they
can be rearranged as follows:

p2[2(x11 − 2α1)(2α1 − x̄)] + 2pq[2(x12 − {α1 + α2})({α1 + α2} − x̄)]

+q2[2(x22 − 2α2)(2α2 − x̄)]

= 2p2(x11 − 2α1)(2α1 − x̄) + 4pq[x12 − (α1 + α2)][(α1 + α2)− x̄)]

+2q2(x22 − 2α2)(2α2 − x̄)

= 4p2(x11 − 2α1)[α1 − (pα1 + qα2)]

+4pq[x12 − (α1 + α2)][(α1 + α2)− 2(pα1 + qα2)]

+4q2(x22 − 2α2)[α2 − (pα1 + qα2)]

= 4p[α1 − (pα1 + qα2)][p(x11 − 2α1) + q(x12 − {α1 + α2})]
+4q[α2 − (pα1 + qα2)][p(x11 − 2α1)p+ q(x12 − {α1 + α2})]

= 0
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Where we have used the identities x̄ = 2(pα1 + qα2) [see equation (3)] and

p(x11 − 2α1) + q(x12 − α1 − α2) = 0

q(x22 − 2α2) + p(x12 − α1 − α2) = 0

[see equations (4) and (5)]. In short, we have now shown that the total genotypic variance in
the population, Vg, can be subdivided into two components — the additive genetic variance,
Va, and the dominance genetic variance, Vd. Specifically,

Vg = Va + Vd ,

where Vg is given by the first line of (6), Va by (9), and Vd by (8).

An alternative expression for Va

There’s another way to write the expression for Va when there are only two alleles at a locus.
I show it here because it will come in handy later.

Va = p2(2α1)
2 + 2pq(α1 + α2)

2 + q2(2α2)
2 − 4(pα1 + qα2)

2

= 4p2α2
1 + 2pq(α1 + α2)

2 + 4q2α2
2 − 4(p2α2

1 + 2pqα1α2 + q2α2
2)

= 2pq[(α1 + α2)
2 − 4α1α2]

= 2pq[(α2
1 + 2α1α2 + α2

2)− 4α1α2]

= 2pq[α2
1 − 2α1α2 + α2

2]

= 2pq[α1 − α2]
2

= 2pqα2

An example: the genetic variance with known genotypes

We’ve been through a lot of algebra by now. Let’s run through a couple of numerical
examples to see how it all works. For the first one, we’ll use the set of genotypic values in
Table 2.

For p = 0.4

x̄ = (0.4)2(100) + 2(0.4)(0.6)(50) + (0.6)2(0)

= 40
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Genotype A1A1 A1A2 A2A2

Genotypic value 100 50 0

Table 2: A set of perfectly additive genotypic values. Note that the genotypic value of the
heterozygote is exactly halfway between the genotypic values of the two homozygotes.

Genotype A1A1 A1A2 A2A2

Genotypic value 100 80 0

Table 3: A set of non-additive genotypic values. Note that the genotypic value of the
heterozygote is closer to the genotypic value of A1A1 than it is to the genotypic value of
A2A2.

α1 = (0.4)(100) + (0.6)(50)− (40)/2

= 50.0

α2 = (0.4)(50) + (0.6)(0)− (40)/2

= 0.0

Vg = (0.4)2(100− 40)2 + 2(0.4)(0.6)(50− 40)2 + (0.6)2(0− 40)2

= 1200

Va = (0.4)2[2(50.0)− 20]2 + 2(0.4)(0.6)[(50.0 + 0.0)− 20]2 + (0.6)2[2(0.0)− 20]2

= 1200

Vd = (0.4)2[2(50.0)− 100]2 + 2(0.4)(0.6)[(50.0 + 0.0)− 50]2 + (0.6)2[2(0.0)− 0]2

= 0.00 .

For p = 0.2, x̄ = 20, Vg = Va = 800, Vd = 0.00. You should verify for yourself that α1 = 50
and α2 = 0 for p = 0.2. If you are ambitious, you could try to prove that α1 = 50 and α2 = 0
for any allele frequency.

For the second example we’ll use the set of genotypic values in Table 3.
For p = 0.4

x̄ = (0.4)2(100) + 2(0.4)(0.6)(80) + (0.6)2(0)

= 54.4

α1 = (0.4)(100) + (0.6)(80)− (54.4)/2
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= 60.8

α2 = (0.4)(80) + (0.6)(0)− (54.4)/2

= 4.8

Vg = (0.4)2(100− 54.4)2 + 2(0.4)(0.6)(80− 54.4)2 + (0.6)2(0− 54.4)2

= 1712.64

Va = (0.4)2[2(60.8)− 54.4]2 + 2(0.4)(0.6)[(60.8 + 4.8)− 54.4]2

+(0.6)2[2(9.6)− 54.4]2

= 1505.28

Vd = (0.4)2[2(60.8)− 100]2 + 2(0.4)(0.6)[(60.8 + 4.8)− 80]2

+(0.6)2[2(9.6)− 0]2

= 207.36 .

To test your understanding, it would probably be useful to calculate x̄, α1, α2, Vg, Va,
and Vd for one or two other allele frequencies, say p = 0.2 and p = 0.8.17 Is it still true that
α1 and α2 are independent of allele frequencies? If you are really ambitious you could try to
prove that α1 and α2 are independent of allele frequencies if and only if x12 = (x11 + x12)/2,
i.e., when heterozygotes are exactly intermediate.
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