
Mutation, Migration, and Genetic Drift

Introduction

So far in this course we’ve focused on single, isolated populations, and we’ve imagined that
there isn’t any migration.1 We’ve also completely ignored the ultimate source of all genetic
variation — mutation. We’re now going to study what happens when we consider multiple
populations simultaneously and when we allow mutation to happen. Let’s consider mutation
first, because it’s the easiest to understand.

Drift and mutation

Remember that in the absence of mutation
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One way of modeling mutation is to assume that every time a mutation occurs it introduces a
new allele into the population. This model is referred to as the infinite alleles model, because
it implicitly assumes that there is potentially an infinite number of alleles. Under this model
we need to make only one simple modification to equation (1). We have to multiply the
expression on the right by the probability that neither allele mutated:

ft+1 =
((

1

2N

)
+

(
1 − 1

2N

)
ft

)
(1 − µ)2 , (2)

where µ is the mutation rate, i.e., the probability that an allele in an offspring is different
from the allele it was derived from in a parent. In writing down this expression, the reason
this is referred to as an infinite alleles model becomes apparent: we are assuming that every

1Well, that’s not quite true. We talked about multiple populations when we talked about the Wahlund
effect and Wright’s FST , but we didn’t talk explicitly about any of the evolutionary processes associated
with multiple populations.
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time a mutation occurs it produces a new allele. The only way in which two alleles can be
identical is if neither mutated.2

So where do we go from here? Well, if you think about it, mutation is always introducing
new alleles that, by definition, are different from any of the alleles currently in the population.
It stands to reason, therefore, that we’ll never be in a situation where all of the alleles in a
population are identical by descent as they would be in the absence of mutation. In other
words we expect there to be an equilibrium between loss of diversity through genetic drift
and the introduction of diversity through mutation.3 From the definition of an equilibrium,
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Since f is the probability that two alleles chosen at random are identical by descent
within our population, 1 − f is the probability that two alleles chosen at random are not
identical by descent in our population. So 1 − f = 4Nµ/(4Nµ + 1) is the genetic diversity
within the population. Notice that as N increases, the genetic diversity maintained in the
population also increases. This shouldn’t be too surprising. The rate at which diversity is

2Notice that we’re also playing a little fast and loose with definitions here, since I’ve just described this
in terms of identity by type when what the equation is written in terms of identity by descent. Can you see
why it is that I can get away with this?

3Technically what the population reaches is not an equilibrium. It reaches a stationary distribution. At
any point in time there is some probability that the population has a particular allele frequency. After
long enough the probability distribution stops changing. That’s when the population is at its stationary
distribution. We often say that it’s “reached stationarity.” This is an example of a place where the inbreeding
analogy breaks down a little.
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lost declines as population size increases so larger populations should retain more diversity
than small ones.4

Notice also that it’s the product Nµ that matters, not N or µ by itself. We’ll see this
repeatedly. In every case I know of when there’s some deterministic process like mutation,
migration, or recombination going on in addition to genetic drift, the outcome of the com-
bined process is determined by the product of N5 and some parameter that describes the
“strength” of the deterministic process.

A two-allele model with recurrent mutation

There’s another way of looking at the interaction between drift and mutation. Suppose we
have a set of populations with two alleles, A1 and A2. Suppose further that the rate of
mutation from A1 to A2 is equal to the rate of mutation from A2 to A1.

6 Call that rate µ. In
the absence of mutation a fraction p0 of the populations would fix on A1 and the rest would
fix on A2, where p0 is the original frequency of A1. With recurrent mutation, no population
will ever be permanently fixed for one allele or the other. Instead we see the following:
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4Remember that if we’re dealing with a non-ideal population, as we always are, you’ll need to substitute
Ne for N in this equation and others like it.

5Remember that when I write N here, I’m just being lazy. I should be writing Ne.
6We don’t have to make this assumption, but relaxing it makes an already fairly complicated scenario

even more complicated. If you’re really interested, ask me about it.
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When 4Nµ < 1 the stationary distribution of allele frequencies is bowl-shaped, i.e, most
populations have allele frequencies near 0 or 1. When 4Nµ > 1, the stationary distribution of
allele frequencies is hump-shaped, i.e., most populations have allele frequencies near 0.5.7 In
other words if the population is “small,” drift dominates the distribution of allele frequencies
and causes populations to become differentiated. If the population is “large,” mutation
dominates and keeps the allele frequencies in the different populations similar to one another.
That’s what we mean when we say that a population is “large” or “small”. A population
is “large” if evolutionary processes other than drift have a predominant influence on the
outcom. It’s “small” if drift has a predominant role on the outcome.

A population is large with respect to the drift-mutation process if 4Nµ > 1, and it is
small if 4Nµ < 1. Notice that calling a population large or small is really just a convenient
shorthand. There isn’t much of a difference between the allele frequency distributions when
4Nµ = 0.9 and when 4Nµ = 1.1. Notice also that because mutation is typically rare, on the
order of 10−5 or less per locus per generation for a protein-coding gene, a population must be
pretty large (> 25, 000) to be considered large with respect to the drift-mutation. Notice also
that whether the population is “large” or “small” will depend on the mutation rate at the
loci that you’re studying. For example, mutation rates are typically on the order of 10−3 for
microsatellites. So a population would be “large” with respect to microsatellites if N > 250.
Think about what that means. If we had a population with 1000 individuals, it would be
“large” with respect to microsatellite evolution and “small” with respect to evolution at a
protein-coding locus.

Drift and migration

I just pointed out that if populations are isolated from one another they will tend to diverge
from one another as a result of genetic drift. Recurrent mutation, which “pushes” all popu-
lations towards the same allele frequency, is one way in which that tendency can be opposed.
If populations are not isolated, but exchange migrants with one another, then migration will
also oppose the tendency for populations to become different from one another. It should
be obvious that there will be a tradeoff similar to the one with mutation: the larger the
populations, the less the tendency for them to diverge from one another and, therefore, the
more migration will tend to make them similar. To explore how drift and migration interact
we can use an approach exactly analogous to what we used for mutation.

The model of migration we’ll consider is an extremely oversimplified one. It imagines that
every allele brought into a population is different from any of the resident alleles.8 It also

7Notice again that it’s the product of N and µ that matters.
8Sounds a lot like the infinite alleles model of mutation, doesn’t it? Just you wait. The parallel gets even
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imagines that all populations receive the same fraction of migrants. Because any immigrant
allele is different, by assumption, from any resident allele we don’t even have to keep track
of how far apart populations are from one another, since populations close by will be no
more similar to one another than populations far apart. This is Wright’s island model of
migration. Given these assumptions, we can write the following:
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That might look fairly familiar. In fact, it’s identical to equation (2) except that there’s
an m in (3) instead of a µ. m is the migration rate, the fraction of individuals in a population
that is composed of immigrants. More precisely, m is the backward migration rate. It’s the
probability that a randomly chosen individual in this generation came from a population
different from the one in which it is currently found in the preceding generation. Normally
we’d think about the forward migration rate, i.e., the probability that a randomly chosen
individual with go to a different population in the next generation, but backwards migration
rates turn out to be more convenient to work with in most population genetic models.9

It shouldn’t surprise you that if equations (2) and (3) are so similar the equilibrium f
under drift and migration is

f̂ ≈ 1

4Nm+ 1

In fact, the two allele analog to the mutation model I presented earlier turns out to be pretty
similar, too.

• If 2Nm > 1, the stationary distribution of allele frequencies is hump-shaped, i.e., the
populations tend not to diverge from one another.10

• If 2Nm < 1, the stationary distribution of allele frequencies is bowl-shaped, i.e., the
populations tend to diverge from one another.

Now there’s a consequence of these relationships that’s both surprising and odd. N is
the population size. m is the fraction of individuals in the population that are immigrants.
So Nm is the number of individuals in the population that are new immigrants in any
generation. That means that if populations receive more than one new immigrant every other
generation, on average, they’ll tend not to diverge in allele frequency from one another.11 It

more striking.
9I warned you weeks ago that population geneticists tend to think backwards.

10You read that right it’s 2Nm not 4Nm as you might have expected from the mutation model. If you’re
really interested why there’s a difference, I can show you. But the explanation isn’t simple.

11In the sense that the stationary distribution of allele frequencies is hump-shaped.
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doesn’t make any difference if the populations have a million individuals apiece or ten. One
new immigrant every other generation is enough to keep them from diverging.

With a little more reflection, this result is less surprising than it initially seems. After all
in populations of a million individuals, drift will be operating very slowly, so it doesn’t take
a large proportion of immigrants to keep populations from diverging.12 In populations with
only ten individuals, drift will be operating much more quickly, so it takes a large proportion
of immigrants to keep populations from diverging.13
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12And one immigrant every other generation corresponds to a backwards migration rate of only 5× 10−7.
13And one immigrant every other generation corresponds to a backwards migration rate of 5 × 10−2.
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