Detecting selection on nucleotide polymorphisms

Introduction

At this point, we’ve refined the neutral theory quite a bit. Our understanding of how molecules evolve now recognizes that some substitutions are more likely than others, but we’re still proceeding under the assumption that most nucleotide substitutions are neutral or detrimental. So far we’ve argued that variation like what Hubby and Lewontin [3, 7] found is not likely to be maintained by natural selection. But we have strong evidence that heterozygotes for the sickle-cell allele are more fit than either homozygote in human populations where malaria is prevalent. That’s an example where selection is acting to maintain a polymorphism, not to eliminate it. Are there other examples? How could we detect them?

In the 1970s a variety of studies suggested that a polymorphism in the locus coding for alcohol dehydrogenase in *Drosophila melanogaster* might not only be subject to selection but that selection may be acting to maintain the polymorphism. As DNA sequencing became more practical at about the same time, population geneticists began to realize that comparative analyses of DNA sequences at protein-coding loci could provide a powerful tool for unraveling the action of natural selection. Synonymous sites within a protein-coding sequence provide a powerful standard of comparison. Regardless of

- the demographic history of the population from which the sequences were collected,
- the length of time that populations have been evolving under the sample conditions and whether it has been long enough for the population to have reached a drift-migration-mutation-selection equilibrium, or
- the actual magnitude of the mutation rate, the migration rate, or the selection coefficients

1It was still vastly more laborious than it is now.

© 2001-2017 Kent E. Holsinger
the synonymous positions within the sequence provide an internal control on the amount and pattern of differentiation that should be expected when substitutions are neutral. Thus, if we see different patterns of nucleotide substitution at synonymous and non-synonymous sites, we can infer that selection is having an effect on amino acid substitutions.

Nucleotide sequence variation at the Adh locus in Drosophila melanogaster

Kreitman [4] took advantage of these ideas to provide additional insight into whether natural selection was likely to be involved in maintaining the polymorphism at Adh in *Drosophila melanogaster*. He cloned and sequenced 11 alleles at this locus, each a little less than 2.4kb in length. If we restrict our attention to the coding region, a total of 765bp, there were 6 distinct sequences that differed from one another at between 1 and 13 sites. Given the observed level of polymorphism within the gene, there should be 9 or 10 amino acid differences observed as well, but only one of the nucleotide differences results in an amino acid difference, the amino acid difference associated with the already recognized electrophoretic polymorphsim. Thus, there is significantly less amino acid diversity than expected if nucleotide substitutions were neutral, consistent with my assertion that most mutations are deleterious and that natural selection will tend to eliminate them. In other words, another example of the “sledgehammer principle.”

Does this settle the question? Is the Adh polymorphism another example of allelic variants being neutral or selected against? Would I be asking these questions if the answer were “Yes”?

Kreitman and Aguadé

A few years after Kreitman [4] appeared, Kreitman and Aguadé [5] published an analysis in which they looked at levels of nucleotide diversity in the Adh region, as revealed through analysis of RFLPs, in *D. melanogaster* and the closely related *D. simulans*. Why the comparative approach? Well, Kreitman and Aguadé recognized that the neutral theory of molecular evolution makes two predictions that are related to the underlying mutation rate:

- If mutations are neutral, the substitution rate is equal to the mutation rate.
• If mutations are neutral, the diversity within populations should be about

\[4N_e\mu/(4N_e\mu + 1). \]

Thus, if variation at the Adh locus in D. melanogaster is selectively neutral, the amount of divergence between D. melanogaster and D. simulans should be related to the amount of diversity within each. What they found instead is summarized in Table 1.

The expected level of diversity in each part of the Adh locus is calculated assuming that the probability of polymorphism is independent of what position in the locus we are examining. Specifically, Kreitman and Aguadé calculated the expected polymorphism as follows:

- They calculated the number of "site equivalents" in each region of the locus. A site equivalent is the actual length of the region (in number of nucleotides) times the fraction of changes within that sequence that would lead to gain or loss of a restriction site.
- There were 414 site equivalents in the 5' flanking region, 411 site equivalents in the Adh locus, and 129 site equivalents in the 3' flanking region.

- They calculated the fraction of site equivalents that were polymorphic across the entire locus:

\[
\frac{25}{414 + 411 + 129} \approx 0.026.
\]

- They calculated the expected number of polymorphic sites within a region as the product of the number of site equivalents and the fraction of polymorphic site equivalents.

They used the same approach to calculate the expected divergence between D. melanogaster and D. simulans with one important exception. They directly compared the nucleotide sequence of one Adh allele from D. melanogaster with one Adh allele from D. simulans. As a result, they didn't have to use the site equivalent correction. They could directly use the number of nucleotides in each region of the gene.

Notice that there is substantially less divergence between D. melanogaster and D. simulans at the Adh locus than would be expected, based on the average level of divergence.

4It's important to note that what I've labeled as the Adh locus in Table 1 is the region that contains the protein coding part of the locus. The 5' and 3' flanking regions are physically adjacent, but none of the nucleotides in these parts of the gene are translated into the Adh enzyme.

5Because sequencing was extremely time-consuming in the mid-1980s, it was impractical to sequence the Adh locus in all of the 81 lines they used in the analysis. Instead they used restriction enzymes to reveal some of the nucleotide sequence variation in the locus.

6Can you explain why it's reasonable to estimate divergence between alleles in these species using only one allele from each of them?
across the entire region. That’s consistent with the earlier observation that most amino acid substitutions are selected against. On the other hand, there is more nucleotide diversity within *D. melanogaster* than would be expected based on the levels of diversity seen in across the entire region. What gives?

Time for a trip down memory lane. Remember something called “coalescent theory?” It told us that for a sample of neutral genes from a population, the expected time back to a common ancestor for all of them is about $4N_e$ for a nuclear gene in a diploid population. That means there’s been about $4N_e$ generations for mutations to occur. Suppose, however, that the electrophoretic polymorphism were being maintained by natural selection. Then we might well expect that it would be maintained for a lot longer than $4N_e$ generations. If so, there would be a lot more time for diversity to accumulate. Thus, the excess diversity could be accounted for if there is balancing selection at ADH.

Kreitman and Hudson

Kreitman and Hudson [6] extended this approach by looking more carefully within the region to see where they could find differences between observed and expected levels of nucleotide sequence diversity. They used a “sliding window” of 100 silent base pairs in their calculations. By “sliding window” what they mean is that first they calculate statistics for bases 1-100, then for bases 2-101, then for bases 3-102, and so on until they hit the end of the sequence (Figure 1).

To me there are two particularly striking things about this figure. First, the position of the single nucleotide substitution responsible for the electrophoretic polymorphism is clearly evident. Second, the excess of polymorphism extends for only a 200-300 nucleotides in each direction. That means that the rate of recombination *within* the gene is high enough to

<table>
<thead>
<tr>
<th></th>
<th>5' flanking</th>
<th>Adh locus</th>
<th>3' flanking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>9</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Expected</td>
<td>10.8</td>
<td>10.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Divergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>86</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>Expected</td>
<td>55</td>
<td>76.9</td>
<td>33.1</td>
</tr>
</tbody>
</table>

1Number of polymorphic sites within *D. melanogaster*

2Number of nucleotide differences between *D. melanogaster* and *D. simulans*

Table 1: Diversity and divergence in the *Adh* region of *Drosophila* (from [5]).
Figure 1: Sliding window analysis of nucleotide diversity in the Adh-Adh-dup region of *Drosophila melanogaster*. The arrow marks the position of the single nucleotide substitution that distinguishes Adh-F from Adh-S (from [6])

randomize the nucleotide sequence variation farther away.\(^7\)

Detecting selection in the human genome

I’ve already mentioned the HapMap project [1], a collection of genotype data at roughly 3.2M SNPs in the human genome. The data in phase II of the project were collected from four populations:

- Yoruba (Ibadan, Nigeria)
- Japanese (Tokyo, Japan)
- Han Chinese (Beijing, China)
- ancestry from northern and western Europe (Utah, USA)

\(^7\)Think about what that means for association mapping. In organisms with a large effective population size, associations due to physical linkage may fall off *very* rapidly, meaning that you would have to have a *very* dense map to have a hope of finding associations.
We expect genetic drift to result in allele frequency differences among populations, and we can summarize the extent of that differentiation at each locus with F_{ST}. If all HapMap SNPs are selectively neutral,\(^8\) then all loci should have the same F_{ST} within the bounds of statistical sampling error and the evolutionary sampling due to genetic drift. A scan of human chromosome 7 reveals both a lot of variation in individual-locus estimates of F_{ST} and a number of loci where there is substantially more differentiation among populations than is expected by chance (Figure 2). At very fine genomic scales we can detect even more outliers (Figure 3), suggesting that human populations have been subject to divergent selection pressures at many different loci [2].

Tajima’s D

So far we’ve been comparing rates of synonymous and non-synonymous substitution to detect the effects of natural selection on molecular polymorphisms. Tajima [8] proposed a method that builds on the foundation of the neutral theory of molecular evolution in a different way. I’ve already mentioned the infinite alleles model of mutation several times. When thinking about DNA sequences a closely related approximation is to imagine that every time a mutation occurs, it occurs at a different site.\(^9\) If we do that, we have an *infinite sites* model of mutation.

When dealing with nucleotide sequences in a population context there are two statistics of potential interest:

- The *number* of nucleotide positions at which a polymorphism is found or, equivalently, the number of segregating sites, k.

- The average per nucleotide diversity, π, where π is estimated as

 $$\pi = \sum x_i x_j \delta_{ij} / N$$

 In this expression, x_i is the frequency of the ith haplotype, δ_{ij} is the number of nucleotide sequence differences between haplotypes i and j, and N is the total length of the sequence.\(^{10}\)

\(^8\)And unlinked to sites that are under selection.

\(^9\)Of course, we know this isn’t true. Multiple substitutions can occur at any site. That’s why the percent difference between two sequences isn’t equal to the number of substitutions that have happened at any particular site. We’re simply assuming that the sequences we’re comparing are closely enough related that nearly all mutations have occurred at different positions.

\(^{10}\)I lied, but you must be getting used to that by now. This isn’t quite the way you estimate it. To get an
Figure 2: Single-locus estimates of F_{ST} along chromosome 7 in the HapMap data set. Blue dots denote outliers. Adjacent SNPs in this sample are separated, on average, by about 52kb. (from [2])
Figure 3: Single-locus estimates of F_{ST} along a portion of chromosome 7 in the HapMap data set. Black dots denote outliers. Solid bars refer to previously identified genes. Adjacent SNPs in this sample are separated, on average, by about 1kb. (from [2])
The quantity $4N_e\mu$ comes up a lot in mathematical analyses of molecular evolution. Population geneticists, being a lazy bunch, get tired of writing that down all the time, so they invented the parameter $\theta = 4N_e\mu$ to save themselves a little time.\footnote{This is not the same θ we encountered when discussing F-statistics. Weir and Cockerham’s θ is a different beast. I know it’s confusing, but that’s the way it is. When reading a paper, the context should make it clear which conception of θ is being used. Another thing to be careful of is that sometimes authors think of θ in terms of a haploid population. When they do, it’s $2N_e\mu$. Usually the context makes it clear which definition is being used, but you have to remember to pay attention to be sure.} Under the infinite-sites model of DNA sequence evolution, it can be shown that

$$
E(\pi) = \theta \\
E(k) = \theta \sum_{i} \frac{n_i - 1}{i},
$$

where n is the number of haplotypes in your sample.\footnote{If your memory is really good, you may recognize that those estimates are method of moments estimates, i.e., parameter estimates obtained by equating sample statistics with their expected values.} This suggests that there are two ways to estimate θ, namely

$$
\hat{\theta}_\pi = \hat{\pi} \\
\hat{\theta}_k = \frac{k}{\sum_{i} \frac{n_i - 1}{i}},
$$

where $\hat{\pi}$ is the average heterozygosity at nucleotide sites in our sample and k is the observed number of segregating sites in our sample.\footnote{The “E” refers to expectation. It is the average value of a random variable. $E(\pi)$ is read as “the expectation of π_i.\footnote{This is not the same θ we encountered when discussing F-statistics. Weir and Cockerham’s θ is a different beast. I know it’s confusing, but that’s the way it is. When reading a paper, the context should make it clear which conception of θ is being used. Another thing to be careful of is that sometimes authors think of θ in terms of a haploid population. When they do, it’s $2N_e\mu$. Usually the context makes it clear which definition is being used, but you have to remember to pay attention to be sure.} If your memory is really good, you may recognize that those estimates are method of moments estimates, i.e., parameter estimates obtained by equating sample statistics with their expected values.} If the nucleotide sequence variation among our haplotypes is neutral and the population from which we sampled is in equilibrium with respect to drift and mutation, then $\hat{\theta}_\pi$ and $\hat{\theta}_k$ should be statistically indistinguishable from one another. In other words,

$$
\hat{D} = \hat{\theta}_\pi - \hat{\theta}_k
$$

should be indistinguishable from zero. If it is either negative or positive, we can infer that there’s some departure from the assumptions of neutrality and/or equilibrium. Thus, \hat{D} can be used as a test statistic to assess whether the data are consistent with the population being at a neutral mutation-drift equilibrium. Consider the value of \hat{D} under following scenarios:

unbiased estimate of π, you have to multiply this equation by $n/(n-1)$, where n is the number of haplotypes in your sample. And, of course, if you’re Bayesian you’ll be even a little more careful. You’ll estimate x_i using an appropriate prior on haplotype frequencies and you’ll estimate the probability that haplotypes i and j are different at a randomly chosen position given the observed number of differences and the sequence length. That probability will be close to δ_{ij}/N, but it won’t be identical.
Neutral variation If the variation is neutral and the population is at a drift-mutation equilibrium, then \(\hat{D} \) will be statistically indistinguishable from zero.

Overdominant selection Overdominance will allow alleles belonging to the different classes to become quite divergent from one another. \(\delta_{ij} \) within each class will be small, but \(\delta_{ij} \) between classes will be large and both classes will be in intermediate frequency, leading to large values of \(\theta_\pi \). There won’t be a similar tendency for the number of segregating sites to increase, so \(\theta_k \) will be relatively unaffected. As a result, \(\hat{D} \) will be positive.

Population bottleneck If the population has recently undergone a bottleneck, then \(\pi \) will be little affected unless the bottleneck was prolonged and severe.\(^{14}\) \(\theta_k \), however, may be substantially reduced. Thus, \(\hat{D} \) should be positive.

Purifying selection If there is purifying selection, mutations will occur and accumulate at silent sites, but they aren’t likely ever to become very common. Thus, there are likely to be lots of segregating sites, but not much heterozygosity, meaning that \(\hat{\theta}_k \) will be large, \(\hat{\theta}_\pi \) will be small, and \(\hat{D} \) will be negative.

Population expansion Similarly, if the population has recently begun to expand, mutations that occur are unlikely to be lost, increasing \(\hat{\theta}_k \), but it will take a long time before they contribute to heterozygosity, \(\hat{\theta}_\pi \). Thus, \(\hat{D} \) will be negative.

In short, \(\hat{D} \) provides a different avenue for insight into the evolutionary history of a particular nucleotide sequence. But interpreting it can be a little tricky.

\(\hat{D} = 0 \): We have no evidence for changes in population size or for any particular pattern of selection at the locus.\(^{15}\)

\(\hat{D} < 0 \): The population size may be increasing or we may have evidence for purifying selection at this locus.

\(\hat{D} > 0 \): The population may have suffered a recent bottleneck (or be decreasing) or we may have evidence for overdominant selection at this locus.

\(^{14}\)Why? Because most of the heterozygosity is due to alleles of moderate to high frequency, and those are not the ones likely to be lost in a bottleneck.

\(^{15}\)Please remember that the failure to detect a difference from 0 could mean that your sample size is too small to detect an important effect. If you can’t detect a difference, you should try to assess what values of \(D \) are consistent with your data and be appropriately circumspect in your conclusions.
If we have data available for more than one locus, we may be able to distinguish changes in population size from selection at any particular locus. After all, all loci will experience the same demographic effects, but we might expect selection to act differently at different loci, especially if we choose to analyze loci with different physiological function.

A quick search in Google Scholar reveals that the paper in which Tajima described this approach [8] has been cited over 8800 times. Clearly it has been widely used for interpreting patterns of nucleotide sequence variation. Although it is a very useful statistic, Zeng et al. [9] point out that there are important aspects of the data that Tajima’s D does not consider. As a result, it may be less powerful, i.e., less able to detect departures from neutrality, than some alternatives.

References

\[^{16}\text{Search on 19 February 2017.}\]

Creative Commons License

These notes are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.