Analysis of molecular variance (AMOVA)

Introduction

We’ve already encountered π, the nucleotide diversity in a population, namely

$$\pi = \sum_{ij} x_i x_j \delta_{ij},$$

where x_i is the frequency of the ith haplotype and δ_{ij} is the fraction of nucleotides at which haplotypes i and j differ.\(^1\) It shouldn’t come to any surprise to you that just as there is interest in partitioning diversity within and among populations when we’re dealing with simple allelic variation, i.e., Wright’s F-statistics, there is interest in partitioning diversity within and among populations when we’re dealing with nucleotide sequence or other molecular data. The approach I’m going to describe is known as Analysis of Molecular Variance (AMOVA) [1]. We’ll see later that AMOVA can be used very generally to partition variation when there is a distance we can use to describe how different alleles are from one another, but for now, let’s stick with nucleotide sequence data and think of δ_{ij} simply as the fraction of nucleotide sites at which two sequences differ.

Analysis of molecular variance (AMOVA)

The notation now becomes just a little bit more complicated. We will now use x_{ik} to refer to the frequency of the ith haplotype in the kth population. Then

$$x_i = \frac{1}{K} \sum_{k=1}^{K} x_{ik}$$

\(^1\)When I introduced nucleotide diversity before, I defined δ_{ij} as the number of nucleotides that differ between haplotypes i and j. It’s a little easier for what follows if we think of it as the fraction of nucleotides at which they differ instead. It’s really easy to convert between the two, If δ^*ij is the number of nucleotides that differ between haplotypes i and j and N is the length of the haplotype sequence, then $\delta_{ij} = \delta^*ij/N$. Of course, if we wanted to get fancy we could use a Bayesian approach to estimate δ_{ij}, but we’ll avoid that complication in what follows.

© 2001-2021 Kent E. Holsinger
is the mean frequency of haplotype \(i \) across all populations, where \(K \) is the number of populations. We can now define

\[
\pi_t = \sum_{ij} x_i x_j \delta_{ij}
\]

\[
\pi_s = \frac{1}{K} \sum_{k=1}^{K} \sum_{ij} x_{ik} x_{jk} \delta_{ij} ,
\]

where \(\pi_t \) is the nucleotide sequence diversity across the entire set of populations and \(\pi_s \) is the average nucleotide sequence diversity within populations. Then we can define

\[
\Phi_{st} = \frac{\pi_t - \pi_s}{\pi_t},
\]

which is the direct analog of Wright’s \(F_{st} \) for nucleotide sequence diversity. Why? Well, that requires you to remember stuff we covered about two months ago.

To be a bit more specific, refer back to the notes on \(F_{ST} \). When you do, you’ll see that we defined

\[
F_{IT} = 1 - \frac{H_i}{H_t} ,
\]

where \(H_i \) is the average heterozygosity in individuals and \(H_t \) is the expected panmictic heterozygosity. Defining \(H_s \) as the average panmictic heterozygosity within populations, we then observed that

\[
1 - F_{IT} = \frac{H_i}{H_t} = \frac{H_i H_s}{H_s H_t} = (1 - F_{IS})(1 - F_{ST}) .
\]

We can rearrange that equation a bit to solve for \(F_{ST} \) in terms of \(F_{IT} \) and \(F_{IS} \).

\[
1 - F_{ST} = \frac{1 - F_{IT}}{1 - F_{IS}}
\]

\[
F_{ST} = \frac{(1 - F_{IS}) - (1 - F_{IT})}{1 - F_{IS}}
\]

\[\text{You can find the online version here, if you don’t have them handy: } \text{http://darwin.eeb.uconn.edu/eeb348-notes/genetic-structure.pdf.}\]
\[
\begin{align*}
\frac{H_i}{H_t} - \frac{H_i}{H_s} &= (1/H_S) - (1/H_t) \\
1/H_S &= 1 - (1/H_t) \\
1/H_S &= 1 - H_s/H_t.
\end{align*}
\]

In short, another way to think about \(F_{ST}\) is
\[
F_{ST} = \frac{H_t - H_s}{H_t}.
\] (2)

Now if you compare equation (1) and equation (2), you’ll see the analogy.

So far I’ve motivated this approach by thinking about \(\delta_{ij}\) as the fraction of sites at which two haplotypes differ and \(\pi_s\) and \(\pi_t\) as estimates of nucleotide diversity. But nothing in the algebra leading to equation (1) requires that assumption. Excoffier et al. [1] pointed out that other types of molecular data can easily be fit into this framework. We simply need an appropriate measure of the “distance” between different haplotypes or alleles. Even with nucleotide sequences the appropriate \(\delta_{ij}\) may reflect something about the mutational pathway likely to connect sequences rather than the raw number of differences between them. For example, the distance might be a Jukes-Cantor distance or a more general distance measure that accounts for more of the properties we know are associated with nucleotide substitution. The idea is illustrated in Figure 1.

Notice that when we’re partitioning diversity with AMOVA, we’re using the word “diversity” in a different sense than we did with \(F\)-statistics. With \(F\)-statistics we were thinking about diversity solely in terms of allele frequency differences. With AMOVA we’re thinking about diversity in terms of a combination of haplotype frequency differences and a measure of how different — how distant — those haplotypes are from one another.

Once we have \(\delta_{ij}\) for all pairs of haplotypes or alleles in our sample, we can use the ideas lying behind equation (1) to partition diversity — the average distance between randomly chosen haplotypes or alleles — into within and among population components.\(^3\) This procedure for partitioning diversity in molecular markers is referred to as an analysis of molecular

\(^3\) As with \(F\)-statistics, the actual estimation procedure is more complicated than I describe here. Standard approaches to AMOVA use method of moments calculations analogous to those introduced by Weir and Cockerham for \(F\)-statistics [5]. Bayesian approaches are possible, but they are not yet widely available (meaning, in part, that I know how to do it, but I haven’t written the necessary software yet). Gompert et al. [2] describe one approach for Bayesian AMOVA from pooled DNA sequences obtained from high-throughput sequencing.
Figure 1: Converting raw differences in sequence (or presence and absence of restriction sites) into a minimum spanning tree and a mutational measure of distance for an analysis of molecular variance (from [1]).

variance or AMOVA (by analogy with the ubiquitous statistical procedure analysis of variance, ANOVA). Like Wright’s F-statistics, the analysis can include several levels in the hierarchy.

An AMOVA example

Excoffier et al. [1] illustrate the approach by presenting an analysis of restriction haplotypes in human mtDNA. They analyze a sample of 672 mitochondrial genomes representing two populations in each of five regional groups (Figure 2). They identified 56 haplotypes in that sample. A minimum spanning tree illustrating the relationships and the relative frequency of each haplotype is presented in Figure 3.

It’s apparent from Figure 3 that haplotype 1 is very common. In fact, it is present in substantial frequency in every sampled population. An AMOVA using the minimum spanning network in Figure 3 to measure distance produces the results shown in Table 1. Notice that there is relatively little differentiation among populations within the same geograph-
Figure 2: Locations of human mtDNA samples used in the example analysis (from [1]).

Figure 3: Minimum spanning network of human mtDNA samples in the example. The size of each circle is proportional to its frequency (from [1]).
Component of differentiation	Φ-statistics
Among regions | $\Phi_{CT} = 0.220$
Among populations within regions | $\Phi_{SC} = 0.044$
Among all populations | $\Phi_{ST} = 0.246$

Table 1: AMOVA results for the human mtDNA sample (from [1]).

There is, however, substantial differentiation among regions ($\Phi_{CT} = 0.220$). In fact, differences among populations in different regions is responsible for nearly all of the differences among populations ($\Phi_{ST} = 0.246$).

Remembering that AMOVA partitions a combination of haplotype frequency differences and haplotype differences, the interpretation of the Φ-statistics is a little different from the interpretation of F-statistics. When we say that there is relatively little differentiation among populations within regions and that differences among populations are responsible for most of the among population differences, we mean that the evolutionary distance\(^4\) between any two haplotypes from populations within the same region is relatively small while the evolutionary distance between haplotypes from different regions is relatively large.

Notice also that Φ-statistics follow the same rules as Wright’s F-statistics, namely

\[
1 - \Phi_{ST} = (1 - \Phi_{SC})(1 - \Phi_{CT})
\]
\[
0.754 = (0.956)(0.78)
\]

within the bounds of rounding error.\(^5\)

An extension

As you may recall,\(^6\) Slatkin [4] pointed out that there is a relationship between coalescence time and F_{st}. Namely, if mutation is rare then

\[
F_{ST} \approx \frac{\bar{t} - \bar{t}_0}{\bar{t}}
\]

where \bar{t} is the average time to coalescence for two genes drawn at random without respect to population and \bar{t}_0 is the average time to coalescence for two genes drawn at random

\(^4\)Measured on the minimum spanning tree.

\(^5\)There wouldn’t be any rounding error if we had access to the raw data.

from the same populations. Results in [3] show that when δ_{ij} is linearly proportional to the time since two sequences have diverged, Φ_{ST} is a good estimator of F_{ST} when F_{ST} is thought of as a measure of the relative excess of coalescence time resulting from dividing a species into several population. This observation suggests that the combination of haplotype frequency differences and evolutionary distances among haplotypes may provide insight into the evolutionary relationships among populations of the same species.

References

Creative Commons License

These notes are licensed under the Creative Commons Attribution License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.